2 research outputs found

    Cyber Defense Remediation in Energy Delivery Systems

    Get PDF
    The integration of Information Technology (IT) and Operational Technology (OT) in Cyber-Physical Systems (CPS) has resulted in increased efficiency and facilitated real-time information acquisition, processing, and decision making. However, the increase in automation technology and the use of the internet for connecting, remote controlling, and supervising systems and facilities has also increased the likelihood of cybersecurity threats that can impact safety of humans and property. There is a need to assess cybersecurity risks in the power grid, nuclear plants, chemical factories, etc. to gain insight into the likelihood of safety hazards. Quantitative cybersecurity risk assessment will lead to informed cyber defense remediation and will ensure the presence of a mitigation plan to prevent safety hazards. In this dissertation, using Energy Delivery Systems (EDS) as a use case to contextualize a CPS, we address key research challenges in managing cyber risk for cyber defense remediation. First, we developed a platform for modeling and analyzing the effect of cyber threats and random system faults on EDS\u27s safety that could lead to catastrophic damages. We developed a data-driven attack graph and fault graph-based model to characterize the exploitability and impact of threats in EDS. We created an operational impact assessment to quantify the damages. Finally, we developed a strategic response decision capability that presents optimal mitigation actions and policies that balance the tradeoff between operational resilience (tactical risk) and strategic risk. Next, we addressed the challenge of management of tactical risk based on a prioritized cyber defense remediation plan. A prioritized cyber defense remediation plan is critical for effective risk management in EDS. Due to EDS\u27s complexity in terms of the heterogeneous nature of blending IT and OT and Industrial Control System (ICS), scale, and critical processes tasks, prioritized remediation should be applied gradually to protect critical assets. We proposed a methodology for prioritizing cyber risk remediation plans by detecting and evaluating critical EDS nodes\u27 paths. We conducted evaluation of critical nodes characteristics based on nodes\u27 architectural positions, measure of centrality based on nodes\u27 connectivity and frequency of network traffic, as well as the controlled amount of electrical power. The model also examines the relationship between cost models of budget allocation for removing vulnerabilities on critical nodes and their impact on gradual readiness. The proposed cost models were empirically validated in an existing network ICS test-bed computing nodes criticality. Two cost models were examined, and although varied, we concluded the lack of correlation between types of cost models to most damageable attack path and critical nodes readiness. Finally, we proposed a time-varying dynamical model for the cyber defense remediation in EDS. We utilize the stochastic evolutionary game model to simulate the dynamic adversary of cyber-attack-defense. We leveraged the Logit Quantal Response Dynamics (LQRD) model to quantify real-world players\u27 cognitive differences. We proposed the optimal decision making approach by calculating the stable evolutionary equilibrium and balancing defense costs and benefits. Case studies on EDS indicate that the proposed method can help the defender predict possible attack action, select the related optimal defense strategy over time, and gain the maximum defense payoffs. We also leveraged software-defined networking (SDN) in EDS for dynamical cyber defense remediation. We presented an approach to aid the selection security controls dynamically in an SDN-enabled EDS and achieve tradeoffs between providing security and Quality of Service (QoS). We modeled the security costs based on end-to-end packet delay and throughput. We proposed a non-dominated sorting based multi-objective optimization framework which can be implemented within an SDN controller to address the joint problem of optimizing between security and QoS parameters by alleviating time complexity at O(MN2). The M is the number of objective functions, and N is the population for each generation, respectively. We presented simulation results that illustrate how data availability and data integrity can be achieved while maintaining QoS constraints

    Cyber Deception for Critical Infrastructure Resiliency

    Get PDF
    The high connectivity of modern cyber networks and devices has brought many improvements to the functionality and efficiency of networked systems. Unfortunately, these benefits have come with many new entry points for attackers, making systems much more vulnerable to intrusions. Thus, it is critically important to protect cyber infrastructure against cyber attacks. The static nature of cyber infrastructure leads to adversaries performing reconnaissance activities and identifying potential threats. Threats related to software vulnerabilities can be mitigated upon discovering a vulnerability and-, developing and releasing a patch to remove the vulnerability. Unfortunately, the period between discovering a vulnerability and applying a patch is long, often lasting five months or more. These delays pose significant risks to the organization while many cyber networks are operational. This concern necessitates the development of an active defense system capable of thwarting cyber reconnaissance missions and mitigating the progression of the attacker through the network. Thus, my research investigates how to develop an efficient defense system to address these challenges. First, we proposed the framework to show how the defender can use the network of decoys along with the real network to introduce mistrust. However, another research problem, the defender’s choice of whether to save resources or spend more (number of decoys) resources in a resource-constrained system, needs to be addressed. We developed a Dynamic Deception System (DDS) that can assess various attacker types based on the attacker’s knowledge, aggression, and stealthiness level to decide whether the defender should spend or save resources. In our DDS, we leveraged Software Defined Networking (SDN) to differentiate the malicious traffic from the benign traffic to deter the cyber reconnaissance mission and redirect malicious traffic to the deception server. Experiments conducted on the prototype implementation of our DDS confirmed that the defender could decide whether to spend or save resources based on the attacker types and thwarted cyber reconnaissance mission. Next, we addressed the challenge of efficiently placing network decoys by predicting the most likely attack path in Multi-Stage Attacks (MSAs). MSAs are cyber security threats where the attack campaign is performed through several attack stages and adversarial lateral movement is one of the critical stages. Adversaries can laterally move into the network without raising an alert. To prevent lateral movement, we proposed an approach that combines reactive (graph analysis) and proactive (cyber deception technology) defense. The proposed approach is realized through two phases. The first phase predicts the most likely attack path based on Intrusion Detection System (IDS) alerts and network trace. The second phase determines the optimal deployment of decoy nodes along the predicted path. We employ transition probabilities in a Hidden Markov Model to predict the path. In the second phase, we utilize the predicted attack path to deploy decoy nodes. The evaluation results show that our approach can predict the most likely attack paths and thwart adversarial lateral movement
    corecore