399 research outputs found

    Event-Driven Contrastive Divergence for Spiking Neuromorphic Systems

    Full text link
    Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD) are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F) neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The recurrent activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates in an online, asynchronous fashion. We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.Comment: (Under review

    The Application of Spiking Neural Networks in Autonomous Robot Control

    Get PDF
    Artificial neural networks have a wide range of applications nowadays in which they are used for intelligent information processing. This paper deals with an application of spiking neural networks in autonomous mobile robot control. The topology of the implemented spiking neural networks was developed through a modified genetic algorithm and through the process of autonomous interaction with the scene environment. Since the genetic algorithm did not use a crossover operator we adapted the mutation operator adding a constraint that prevented creation of a new generation of population with weak individuals in comparison with the previous generation of population. The paper proposes a parallel combination of both left and right local spiking neural network as well as a practical implementation of this proposition in the form of an intelligent navigation system in an autonomous mobile robot. This design enhances the implemented navigation system with a new cognitive property of intelligent information processing using a spiking neural network. Having been adapted to the scene environment, the navigation system was able to make right decisions, change its direction and refrain from collision with the scene walls

    Bayesian Continual Learning via Spiking Neural Networks

    Full text link
    Among the main features of biological intelligence are energy efficiency, capacity for continual adaptation, and risk management via uncertainty quantification. Neuromorphic engineering has been thus far mostly driven by the goal of implementing energy-efficient machines that take inspiration from the time-based computing paradigm of biological brains. In this paper, we take steps towards the design of neuromorphic systems that are capable of adaptation to changing learning tasks, while producing well-calibrated uncertainty quantification estimates. To this end, we derive online learning rules for spiking neural networks (SNNs) within a Bayesian continual learning framework. In it, each synaptic weight is represented by parameters that quantify the current epistemic uncertainty resulting from prior knowledge and observed data. The proposed online rules update the distribution parameters in a streaming fashion as data are observed. We instantiate the proposed approach for both real-valued and binary synaptic weights. Experimental results using Intel's Lava platform show the merits of Bayesian over frequentist learning in terms of capacity for adaptation and uncertainty quantification.Comment: Accepted for publication in Frontiers in Computational Neuroscienc

    Local learning algorithms for stochastic spiking neural networks

    Get PDF
    This dissertation focuses on the development of machine learning algorithms for spiking neural networks, with an emphasis on local three-factor learning rules that are in keeping with the constraints imposed by current neuromorphic hardware. Spiking neural networks (SNNs) are an alternative to artificial neural networks (ANNs) that follow a similar graphical structure but use a processing paradigm more closely modeled after the biological brain in an effort to harness its low power processing capability. SNNs use an event based processing scheme which leads to significant power savings when implemented in dedicated neuromorphic hardware such as Intel’s Loihi chip. This work is distinguished by the consideration of stochastic SNNs based on spiking neurons that employ a stochastic spiking process, implementing generalized linear models (GLM) rather than deterministic thresholded spiking. In this framework, the spiking signals are random variables which may be sampled from a distribution defined by the neurons. The spiking signals may be observed or latent variables, with neurons whose outputs are observed termed visible neurons and otherwise termed hidden neurons. This choice provides a strong mathematical basis for maximum likelihood optimization of the network parameters via stochastic gradient descent, avoiding the issue of gradient backpropagation through the discontinuity created by the spiking process. Three machine learning algorithms are developed for stochastic SNNs with a focus on power efficiency, learning efficiency and model adaptability; characteristics that are valuable in resource constrained settings. They are studied in the context of applications where low power learning on the edge is key. All of the learning rules that are derived include only local variables along with a global learning signal, making these algorithms tractable to implementation in current neuromorphic hardware. First, a stochastic SNN that includes only visible neurons, the simplest case for probabilistic optimization, is considered. A policy gradient reinforcement learning (RL) algorithm is developed in which the stochastic SNN defines the policy, or state-action distribution, of an RL agent. Action choices are sampled directly from the policy by interpreting the outputs of the read-out neurons using a first to spike decision rule. This study highlights the power efficiency of the SNN in terms of spike frequency. Next, an online meta-learning framework is proposed with the goal of progressively improving the learning efficiency of an SNN over a stream of tasks. In this setting, SNNs including both hidden and visible neurons are considered, posing a more complex maximum likelihood learning problem that is solved using a variational learning method. The meta-learning rule yields a hyperparameter initialization for SNN models that supports fast adaptation of the model to individualized data on edge devices. Finally, moving away from the supervised learning paradigm, a hybrid adver-sarial training framework for SNNs, termed SpikeGAN, is developed. Rather than optimize for the likelihood of target spike patterns at the SNN outputs, the training is mediated by an auxiliary discriminator that provides a measure of how similar the spiking data is to a target distribution. Because no direct spiking patterns are given, the SNNs considered in adversarial learning include only hidden neurons. A Bayesian adaptation of the SpikeGAN learning rule is developed to broaden the range of temporal data that a single SpikeGAN can estimate. Additionally, the online meta-learning rule is extended to include meta-learning for SpikeGAN, to enable efficient generation of data from sequential data distributions

    Brain-Inspired Computational Intelligence via Predictive Coding

    Full text link
    Artificial intelligence (AI) is rapidly becoming one of the key technologies of this century. The majority of results in AI thus far have been achieved using deep neural networks trained with the error backpropagation learning algorithm. However, the ubiquitous adoption of this approach has highlighted some important limitations such as substantial computational cost, difficulty in quantifying uncertainty, lack of robustness, unreliability, and biological implausibility. It is possible that addressing these limitations may require schemes that are inspired and guided by neuroscience theories. One such theory, called predictive coding (PC), has shown promising performance in machine intelligence tasks, exhibiting exciting properties that make it potentially valuable for the machine learning community: PC can model information processing in different brain areas, can be used in cognitive control and robotics, and has a solid mathematical grounding in variational inference, offering a powerful inversion scheme for a specific class of continuous-state generative models. With the hope of foregrounding research in this direction, we survey the literature that has contributed to this perspective, highlighting the many ways that PC might play a role in the future of machine learning and computational intelligence at large.Comment: 37 Pages, 9 Figure
    • …
    corecore