1,759 research outputs found

    On the possibility to detect quantum correlation regions with the variable optimal measurement angle

    Full text link
    Quantum correlations described by quantum discord and one-way quantum deficit can contain ordinary regions with {\em constant} (i.e., universal) optimal measurement angle 00 or π/2\pi/2 with respect to the zz-axis and regions with a {\em variable} (state-dependent) angle of the optimal measurement. The latter regions which are absent in the Bell-diagonal states are very tiny for the quantum discord and cannot be observed experimentally due to various imperfections on the preparation and measurement steps of the experiment. On the contrary, for the one-way quantum deficit we succeeded in getting the special two-qubit X states which seem to allow one to reach all regions of quantum correlation exploiting available quantum optical techniques. These states give possibility to deep investigation of quantum correlations and related optimization problems at new region and its boundaries. In the paper, explicit theoretical calculations applicable to one-way deficit are reported, together with the design of the experimental setup for generating such selected family of states; moreover, there are presented numerical simulations showing that the most inaccessible region with the intermediate optimal measurement angle may be resolved experimentally.Comment: 10 pages, 8 figures (11 eps files

    Local versus non-local information in quantum information theory: formalism and phenomena

    Get PDF
    In spite of many results in quantum information theory, the complex nature of compound systems is far from being clear. In general the information is a mixture of local, and non-local ("quantum") information. To make this point more clear, we develop and investigate the quantum information processing paradigm in which parties sharing a multipartite state distill local information. The amount of information which is lost because the parties must use a classical communication channel is the deficit. This scheme can be viewed as complementary to the notion of distilling entanglement. After reviewing the paradigm, we show that the upper bound for the deficit is given by the relative entropy distance to so-called psuedo-classically correlated states; the lower bound is the relative entropy of entanglement. This implies, in particular, that any entangled state is informationally nonlocal i.e. has nonzero deficit. We also apply the paradigm to defining the thermodynamical cost of erasing entanglement. We show the cost is bounded from below by relative entropy of entanglement. We demonstrate the existence of several other non-local phenomena. For example,we prove the existence of a form of non-locality without entanglement and with distinguishability. We analyze the deficit for several classes of multipartite pure states and obtain that in contrast to the GHZ state, the Aharonov state is extremely nonlocal (and in fact can be thought of as quasi-nonlocalisable). We also show that there do not exist states, for which the deficit is strictly equal to the whole informational content (bound local information). We then discuss complementary features of information in distributed quantum systems. Finally we discuss the physical and theoretical meaning of the results and pose many open questions.Comment: 35 pages in two column, 4 figure

    The classical-quantum boundary for correlations: discord and related measures

    Full text link
    One of the best signatures of nonclassicality in a quantum system is the existence of correlations that have no classical counterpart. Different methods for quantifying the quantum and classical parts of correlations are amongst the more actively-studied topics of quantum information theory over the past decade. Entanglement is the most prominent of these correlations, but in many cases unentangled states exhibit nonclassical behavior too. Thus distinguishing quantum correlations other than entanglement provides a better division between the quantum and classical worlds, especially when considering mixed states. Here we review different notions of classical and quantum correlations quantified by quantum discord and other related measures. In the first half, we review the mathematical properties of the measures of quantum correlations, relate them to each other, and discuss the classical-quantum division that is common among them. In the second half, we show that the measures identify and quantify the deviation from classicality in various quantum-information-processing tasks, quantum thermodynamics, open-system dynamics, and many-body physics. We show that in many cases quantum correlations indicate an advantage of quantum methods over classical ones.Comment: Close to the published versio
    corecore