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In spite of many results in quantum information theory, the complex nature of compound systems is far from
clear. In general the information is a mixture of local and nonlocals“quantum”d information. It is important
from both pragmatic and theoretical points of view to know the relationships between the two components. To
make this point more clear, we develop and investigate the quantum-information processing paradigm in which
parties sharing a multipartite state distilllocal information. The amount of information which is lost because
the parties must use a classical communication channel is thedeficit. This scheme can be viewed ascomple-
mentaryto the notion of distilling entanglement. After reviewing the paradigm in detail, we show that the
upper bound for the deficit is given by the relative entropy distance to so-called pseudoclassically correlated
states; the lower bound is the relative entropy of entanglement. This implies, in particular, thatany entangled
state is informationally nonlocal—i.e., has nonzero deficit. We also apply the paradigm to defining the ther-
modynamical cost of erasing entanglement. We show the cost is bounded from below by relative entropy of
entanglement. We demonstrate the existence of several other nonlocal phenomena which can be found using
the paradigm of local information. For example, we prove the existence of a form of nonlocality without
entanglement and with distinguishability. We analyze the deficit for several classes of multipartite pure states
and obtain that in contrast to the GHZ state, the Aharonov state is extremely nonlocal. We also show that there
do not exist states for which the deficit is strictly equal to the whole informational contentsbound local
informationd. We discuss the relation of the paradigm with measures of classical correlations introduced earlier.
It is also proved that in the one-way scenario, the deficit is additive for Bell diagonal states. We then discuss
complementary features of information in distributed quantum systems. Finally we discuss the physical and
theoretical meaning of the results and pose many open questions.

DOI: 10.1103/PhysRevA.71.062307 PACS numberssd: 03.67.2a

I. INTRODUCTION

“Quantum information” is emerging as a primitive notion
in physics following an essential extension of classical Sh-
annon information theoryf1g into the quantum domain.
Quantum information cannot be defined precisely, but it is
necessary to understand the role of this mysterious and “un-
speakable” informationf2g in newly discovered quantum
phenomena such as teleportationf3g or cryptographyf4,5g.
These phenomena suggest that quantum states represent
quantum information—reality we process in the laboratory,
but which cannot be described as a sequence of classical
symbols on a Turing tapef6,7g. Recently the no-deleting and
no-cloning theorems have been connected with the principle
of conservation of quantum informationf8g. Like physical
quantities such as energy, quantum information has different
forms and one of them is entanglement—an exotic resource
extraordinarily sensitive to the environment. One finds a loss
of entanglement in the transition from a pure entangled state
to a noisy entangled state, yet remarkably this process can be
partially reversed within the distant laboratories paradigm.
Namely from a large number of noisy bipartite states shared
between two distant parties one can distill a number of en-
tanglement bitsse-bitsd at the optimal conversion rate using
local operations and classical communicationssLOCCd f9g.

Despite a plethora of measures which can be used to
quantify entanglement, we are still far from properly under-

standing it. Part of the difficulty is that measures of a quan-
tity are not enough to understand the quantity—one needs to
understand entanglement in relation to something else. You
cannot understand entanglement in relation to entanglement.
In the above context, basic questions arise:sid Does en-
tanglement exhaust all aspects of quantum information?sii d
Are there resources other than entanglement in the distant
laboratory paradigm?siii d Does quantum information in-
volve a nonlocality which goes beyond Bell’s theorem?

The above questions have been recently considered
f10–20g. In particular, a new quantum-information process-
ing paradigm has been introduced, where we proposed the
idea of attributing cost to local resources such as pure local
qubits f14,15g. Instead of asking how much entanglement
can be distilled from a state shared between two parties, one
can ask how many local pure qubitsI l can be drawn from it.
This gives a quantityscalled localizable informationd which
can then be used to get insight into the double nature of
quantum information. Namely, it was shown that local infor-
mation can be thought of as being complementary to en-
tanglementf16g, thereby allowing one, in particular, to un-
derstand entanglement in relation toI l.

At first glance, the idea of considering local pure states to
be a resource may seem curious. In traditional entanglement
theory, one thinks of local pure states as being a free re-
source. Each party can use as many pure-state ancillas as
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desired. Furthermore, one can obtain pure states from a
mixed state simply by performing a measurement on the
state. Note, however, that the second law of thermodynamics
tells us that purity is indeed a resource. One can never de-
crease the entropy of a closed system; entropy only in-
creases. The reason a measurement appears to produce pure
states is that we ignore the fact that the measuring apparatus
must have initially been set in some pure state, and after the
measurement, the apparatus will be in a mixture of all the
different measurement outcomes. In other words, in a closed
system which includes the state, the measurement apparatus,
and the observer, the total number of pure qubits can never
increase. We must therefore be careful how we define the
allowable class of operations in order to account for all pure
states which might be introduced by various parties from the
outside. We will discuss such a useful class, calledclosed
operations, which can properly be used to account for pure
states.

By considering pure states as a resource, one is immedi-
ately connecting quantum-information theory with thermo-
dynamics. In fact, it was the early foundational work on re-
versible computationf21g where the entropic cost of
computation was consideredf22g. The relationship between
information and physical tasks such as performing work also
has a long history beginning with Szilardf23g. In fact, as
shown inf15,24g the information function is exactly equal to
the number of pure qubits one can extract from a state while
having many copies of the state. We will therefore talk of
extractinginformation I from a state. One can think of this as
extracting pure states from more mixed states. From Szilard,
we also know that the informationI is closely related to the
amount of workW one can extract from a single heat bath
sseef25g for a rigorous derivationd. Thus we sometimes talk
of extracting work, or information, or purity from states.
These connections will be discussed in Sec. II where we
review the basic concepts.

The rough essence of the approach is that if separated
individuals extract local pure statessi.e., informationd from a
shared state, using only local operations and classical com-
munication, then they will in general be able to extract less
information than if they were together. If the amount of in-
formation they can extract when they are together from a
state% is Is%d and the optimalf26g amount they can extract
when separated isI ls%d, then the differencescalled thedefi-
citd Ds%d; Is%d− I ls%d feels some nonclassical correlations
in the state%.

Note that the quantityD is not an entanglement measure,
at least in the regime of finite copies of a state%. It feels not
only entanglement, but also so-callednonlocality without en-
tanglementf10g. We say that it quantifiesthe quantumness of
correlations rather than entanglementsfirst attempts to for-
mally quantify such features for quantum states are due to
f11g and for ensembles inf10gd. The state which has nonzero
deficit we will call “informationally nonlocal.” The term
nonlocalitymeans here that distant parties can do worse than
parties that are together, despite the fact that they can com-
municate classicallyf10g. Thus it is a different notion than
the nonlocality understood as a violation of local realismswe
have discussed the relations inf27gd.

In this work we review some of the results off14–17,24g
and provide more detail. We then give a number of new,

essential results within the paradigm of distillation of local
information. In particular we provide a lower bound for the
deficit: it is bounded from below by the relative entropy of
entanglementf28,29g. We also find that the closed LOCC
sCLOCCd paradigm allows one to define the thermodynami-
cal cost of erasure of entanglement. The cost is also bounded
from below by the relative entropy of entanglement. We also
analyze the deficit for multiparty pure states such as the Aha-
ronov statef30g, Greenberger-Horne-ZeilingersGHZd state
f31g, andW state. We obtain that, according to the deficit, the
Aharonov state exhibits the greatest quantum correlations,
while the GHZ state, the least. We show that in the finite
regimesi.e., where Alice and Bob deal with a single copy of
a stated, any entangled state isinformationally nonlocal; i.e.,
it has nonzero deficit. Moreover, we provide states which
exhibit informational nonlocality even though they are sepa-
rable and have an eigenbasis of distinguishable states—call it
nonlocality without entanglement but with distinguishability
son the level of ensembles, it has its counterpart inf10gd. We
also provide many other interesting results, including the im-
possibility of catalysis with local pure states and the nonex-
istence of states whose entire informational contents is non-
localizable.

The paper is organized as follows. In Sec. II an opera-
tional meaning of information is briefly recalled in terms of
transition rates and basic laws of thermodynamics. In Sec.
III, the idea of information as a resource in the distant labo-
ratory paradigm is presented. Here the central notion of the
present formalism—i.e., thequantum-information deficit—is
defined. In Sec. IV the various aspects of the information
deficit and its dual notionlocalizable informationare dis-
cussed and an interpretation of the deficit in the context of
quantum nonlocality is provided. Section V presents the defi-
cit as the entropy production needed to reach the set of
pseudoclassically correlated states. The concept is then gen-
eralized to an arbitrary set, including a set of separable states,
and the cost of erasure of entanglement is defined. Section
VI provides upper and lower bounds for the deficit in terms
of the relative entropy distance and an upper bound for the
entanglement erasure cost.

We next turn to exploring new phenomena which can be
discovered using our methods. In Sec. VII, the main impli-
cations of the results of previous section are provided includ-
ing the key conclusion that any entangled state isinforma-
tionally nonlocal in a well-defined, natural sense. We also
prove the existence of separable states which have a locally
distinguishable eigenbasis, yet contain nonlocalizable infor-
mation. Section VIII is devoted to a generalization to a mul-
tipartite case. Some of these results were briefly noted in
f14g. Here the information deficit is calculated and the
asymptotic behavior is analyzed for special examples of pure
multipartite states: the GHZ state,W state, and Aharonov
state. We find that the Aharonov state can be considered to be
the most nonlocal. Section IX contains an exhaustive analy-
sis of Bell states. In Sec. X we prove thatsas opposed to pure
nondistillable entanglement—i.e., the bound entanglement
phenomenond pure unlocalizable information does not exist.
Section XI includes an analysis of the proportions of quan-
tum and classical correlations in quantum states, addressing
the question, can the first component exceed the second? In
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Sec. XII zero-way and one-way subclasses of informational
deficit are presented. It is shown that in the asymptotic re-
gime, the one-way deficit is nonzero for separablesdisen-
tangledd states, stressing that quantum correlations are more
than quantum entanglement. Section XIII discusses the rela-
tion of our measure to other measures of the quantumness of
correlations; i.e.,one-way and two-way quantum discordis
discussed. Section XIV contains discussion of the result in
the context of classical correlations measure introduced by
other authors including the Henderson-Vedral measure. A
discussion of complementarity between information quanti-
ties in distributed quantum systems is provided in Sec. XV.
The paper closes with a general discussion of the results and
a list of open questions in Sec. XVI.

II. INFORMATION: AN OPERATIONAL MEANING

Before turning to the case of parties who are in distant
laboratories, it will prove worthwhile to discuss the notion of
information from a more general perspective. Although we
often talk about information as an abstract concept, here we
use it as a term of art which refers to a specific function

Is%d = log2 d − Ss%d, s1d

where Ss%d=−tr% log % is the von Neumann entropy of%
acting on a Hilbert space of dimensiond. We will usually
work with qubits, in which case logd=N is an integer. As we
will see in the next section, the information function has an
operational meaning: it is the number of pure qubits one can
draw from many copies of the state.

Let us now shortly discuss the information functions1d in
the context of the more common Shannon picture. In the
latter approach a source produces a large amount of informa-
tion if it has large entropy. Thus information can be associ-
ated with entropy. This is because the receiver is being in-
formed only if he is “surprised.” In such an approach the
information has a subjective meaning: something which is
known by the sender, but is not known by the receiver. The
receiver treats the message as the information, if she did not
know it. However, one can also consider an objective pic-
ture; a system represents information if it is in a pure state
szero entropyd. We knowwhat state it is in. The state is itself
the information.

We obtain a picture where two kinds of information are
dual. Shannon’s entropy represents the information onecan
get to knowabout the system, while the information of Eq.
s1d represents the information oneknowsabout the system.
Together they add up to a constant, which characterizes the
system onlysnot its particular stated:

Istotald = log d = Ssrd + Isrd. s2d

Note that the “objective” picture is more natural in the
context of thermodynamics. There, a heat bath is highly en-
tropic, and we are ignorant of exactly what state it is in. On
the other hand, it is known that using pure states, one can
draw work from a single heat bath using a Szilard heat en-
gine f23g. The pure state represents information needed to
order the energy of the heat bath. Knowing which side of a
box the molecules of gas are in allows one to draw work by

having the molecules push out a pistonssee Fig. 1d. High
entropy of the gas implies ignorance of the molecule posi-
tions and an inability to draw work from the system. In gen-
eral from a single heat bath of temperatureT by use of a
system in stater, one can draw amount of workscf. f32gd

W= kTI. s3d

The process does not violate the second law because the
information is depleted as entropy from the heat bath accu-
mulates in the engine, and one cannot run a perpetual mobil.
Thus a quantum system in a nonmaximally mixed state can
be thought of as a type of fuel or resource. In fact, originally,
our motivation for considering the function 1 inf14g was to
understand entanglement in a thermodynamical context. We
thus interchangeably speak of workW or information
spurityd I.

A. Information and transition rates

In f15,24g it was shown that the functionI has operational
meaning in the asymptotic regime of many identical copies.
It gives the number of pure states that one can obtain from a
state % under a certain class of operations we call noisy
operationssNO’sd: operations that consist ofsid unitary trans-

FIG. 1. Drawing work from a single heat bath using knowledge
about the position of the moleculesthe Szilard engined. In the first
stage the molecule is known to be on the right-hand side. Next, a
piston is inserted, and the molecule pushes it out, thus performing
kT bits of work. After this stage, the position of the molecule is
unknown, and we cannot use it to perform more work.
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formationssii d partial trace andsiii d adding ancillas in maxi-
mally mixed state. The motivation for considering such a
class is that if we want to measure puritysi.e., informationd,
as a resource to be counted, then we should restrict the class
of operations so as not to allow pure states being added for
free. For example, if our class of operations allowed the cre-
ation of pure states out of nothing, it would be impossible to
measure how much informationspurityd could be extracted
from a state, because an infinite amount could always be
created. Thus, for example, we only allow adding maximally
mixed states with maximal entropy, since with these alone,
pure states cannot be created.

Having defined the class of operations one can show that
it is the unique functionsup to constantsd that is not increas-
ing under the class of NO’s. One then shows thatI deter-
mines the optimal rate of transitions between states under
NO’s. Let us now discuss two special cases.

First, givenn copies of state% one can obtainnIs%d qu-
bits in a pure state. This is done essentially by quantum data
compressionf33g scf. f34,35gd. In data compression, one
keeps the signal and discards the qubits which are in the pure
state. Here we do the opposite. We discard the “signal,” treat-
ing it as noise, and keep instead the redundanciesswhich are
in pure stated. Thus we obtain pure states. This is essentially
like cooling f36g. The protocol does not require using noisy
ancillasse.g., maximally mixed statesd.

A second protocol of interest is that one can takenfN
−Ss%dg pure qubits and producen copies of%. The protocol,
described inf24g, takes pure states and dilutes them using
ancillas in the maximally mixed statesnoised. The existence
of such dual protocols is similar to entanglement concentra-
tion and dilutionf37g. And similarly as inf38,39g, this can be
used to prove that there is a unique function that does not
increase under the NO class of operations.

Note that forK pure qubits, the informationI is equal to
K. For the maximally mixed stateI =0. As mentioned,I is
monotonically decreasing under partial trace and adding an-
cillas in the maximally mixed state. It is of course constant
under unitary operations. The property that makes it a unique
measure of information in the asymptotic regime is
asymptotic continuitysseef39–41gd which means that if two
states are close to each other, then so is their informations
per qubit. It is important to remember thatI is not expan-
sible; i.e., if we embed the state into larger Hilbert space,
then it changessbecause the number of qubits increasesd. The
reason is obvious even within the classical framework: if
there are two possible states of the system, knowledge of the
state represents less information than knowledge of the state
in the case of, say, three possible configurations. It is in
contrast with entanglement theory where a pure state of
Schmidt rank 2 means always the same thing, independently
of how large the system is. Also the entropy of the state
depends only on nonzero eigenvalues: e.g., the entropy of a
pure state is zero, independently of how large the system is.
However, in the present case, the Hilbert space and its di-
mension are important elements in our considerations.

B. Information in the context of “closed operations”

In the previous section we argued that the information
function gives transition rates from the mixed state to pure

and backwards, and that it gives uniqueness of information
in the context of NO’s. For the rest of this paper we will not
treat additional mixed states as a free resource. Thus let us
now discuss the meaning of information in the context of a
class that is compatible with the class of operations which
we will use in the case of distributed systems further in this
paper. Namely, we can considerclosed operationssCO’sd.
They are arbitrary compositions of the following two basic
operations:sid unitary transformations andsii d dephasingr
→oiPirPi whereoiPi = I, andPi are projectors not necessar-
ily of rank one.

We call the class closed, though it is not actually fully
closed. Information cannot go in, but can go outsvia dephas-
ingd. The name closed is motivated by the fact that the num-
ber of qubits is the same, and the qubits cannot be exchanged
between the system of interest and environment. The only
allowed contact with the environment is decoherence caused
by operationsii d. As with NO operations, the CO class is
motivated by wanting to quantify puritysi.e., information
and entropyd. Namely, just as in thermodynamics, if we want
to consider entropy, then we must isolate our system. Thus
the class does not allow one to bring in pure states for free
and thus allows us to count the amount of purity which is
contained in a given system. In the next section we will
introduce this “closed” paradigm to the distant laboratory
scenario, by use of which we will define the quantum deficit.

Now, let us ask about drawing pure qubits out of a given
state by the present class of operations. The operations do
not change the size of the system, so that when we start, e.g.,
with many copies of the stater, we cannot end up with a
smaller system in almost a pure state. However, this is not a
big problem. Imagine for a while that in addition we can
apply a partial traceswhich is not allowed in CO’sd. Then the
process of drawing pure qubits can be divided into two
stages:s1d some CO operations aiming to concentrate the
pure part into some number of qubits ands2d partial trace of
the remaining qubits.

Since we do not allow for partial trace, one can simply
stop before tracing out. The obtained state will have a form
of sapproximated product of qubits in a pure state and the rest
of the system—some garbage. Thus the process of dividing a
system into a pure part and garbage we can treat as extrac-
tion pure qubits.

Now, let us ask how many pure qubits can be drawn from
a state by closed operations in the above sense? Actually, the
process of drawing qubits by NO’s did not use maximally
mixed states. It was just a unitary operation, plus partial
trace. Thus we can apply this operationsunitaries are allowed
in CO’sd and get againI qubits per input states. Thus also
within the “closed picture” information has the same inter-
pretation of a maximal amount of pure qubits that can be
obtained from a state per input copy by closed operations.

III. RESTRICTING THE CLASS OF OPERATIONS
IN THE DISTANT LABORATORY PARADIGM:
CLOCC AND THE INFORMATION DEFICIT

In the preceding section, we discussed the notion of infor-
mation from the perspective of being able to reversibly distill
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pure states from a given state%. Now, one can ask about how
things change when the allowable class of operations one can
perform is somehow restricted. This is a rather general ques-
tion, but since here we are interested in understanding en-
tanglement and nonlocality, we will examine the restricted
class of operations which occurs when various parties hold
some joint state, but are in distant laboratories. One then
imagines that Alice and Bob wish to distill as many locally
pure states as possible—i.e., product pure states such as
u0^mAlA ^ u0^mBlB. The amount of local information which is
distillable we callI l.

In the ordinary approach to the distant laboratories para-
digm, one imagines that two partiessAlice and Bobd are in
distant laboratories and can only perform local operations
and classical communicationsLOCCd. However, as we
noted, this class of operations is not suitable to deal with the
questions of concentration of information to local form. That
is because under LOCC, one does not count the information
that gets added to the systems through ancillas, measuring
devices, etc. We thus have to state the paradigm more pre-
cisely. Since we are interested inlocal information, we must
treat it as a resource, assuming it cannot be created, but only
manipulated. Once we have a compound state, the task is to
localize the information by using classical channel between
Alice and Bob.

The new paradigm was introduced in Ref.f14g where one
essentially looks at a closed system as one does in thermo-
dynamics when calculating changes in entropy. One imag-
ines that Alice and Bob are in some closed box, which does
not allow them to import additional quantum states, except
for ones which we specifically keep track of and account for.

In defining a class of operations, the crucial point is that
here, unlike in usual LOCCslocal operations and classical
communicationd schemes, one must explicitly account for all
entropy transferred to measuring devices or ancillas. So in
defining the class of allowable operations one must ensure
that no information loss is being hidden when operations are
being carried out. Moreover, the operations should be gen-
eral enough to represent faithfully the ultimate possibilities
of Alice and Bob to concentrate information. In other words,
we would not like to introduce any limitation apart from two
basic ones:sid there is a classical channel between Alice and
Bob andsii d local information is a resourcescannot be in-
creasedd.

We consider a state%AB acting on Hilbert spaceHAB
=HA ^ HB. Let us first define the elementary allowable ele-
ments of closed LOCC operations.

Definition 1. By CLOCC operations on bipartite system of
nAB qubits we mean all operations that can be composed out
of sid local unitary transformations andsii d sending sub-
systems down a completely decoheringsdephasingd channel.

The latter channel is of the form

%in → %out = o
i

Pi%Pi , s4d

wherePi are one-dimensional projectors. For a qubit system,
it acts as

%in = F%11 %12

%21 %22
G → %out = F%11 0

0 %22
G . s5d

It is understood that%in is at the sender’s site, while%out is at
the receiver’s site. The operationsii d accounts for both local
measurements and sending the results down a classical chan-
nel. It can be disassembled into two parts:sad local dephas-
ing sat, say, the sender sited and sbd sending a qubit intact
sthrough a noiseless quantum channeld to the receiver. Thus
suppose that Alice and Bob share a state%AB;%A8A9B, and
Alice decided to send subsystemA9 to Bob, down the
dephasing channel. The following action will have the same
effect. Alice dephases locally the subsystemA9:

%A8A9B → o
i

Pi
A9 ^ IA8B%A8A9BPi

A9 ^ IA8B. s6d

The state is now of the form

%A8A9B
out = o

i

piPi
A9 ^ %i

A8B. s7d

Thus partA9 is classically correlated with the rest of the
systemsit is stronger than to say that the state is separable
with respect toA9 :A8Bd. Now Alice sends systemA9 to Bob
through an ideal channel. Thus the final state differs from the
state %A8A9B

out only in that systemA9 is at the Bob site. It
follows that operation 1 can be replaced by the following
two operations:siiad local dephasing andsiibd sending a
completely dephased subsystem.

Note that operationssid and siibd are reversible. Only op-
eration siiad can, in general, be irreversible. Actually it is
irreversible if only itchangesthe state—i.e., in all nontrivial
cases. Note also that the operations do not change the dimen-
sion of the total Hilbert space or, equivalently, the number of
qubits of the total system, even though the particular qubits
can be reallocated; for example, at the end all qubits can be
at Alice’s site.

Let us finally note that it may happen that after the pro-
tocol, one of the parties will be left without any system at all,
as everything has been sent to the other parties. It is only the
total number of particles which is conserved.

Comparison with other classes of operations

For the purpose of the present paper, we will use solely
CLOCC operations. Yet we have also found it useful to use
another class of operations; thus, we will describe the other
class and compare it with CLOCC.

Let us first present the otherslikely equivalentd class of
operations, called noisy LOCCsNLOCCd. The relation be-
tween NLOCC and CLOCC will be similar to the relations
between NO and CO: the elementary operations will be the
same as in CLOCC, plus tracing out local systems and add-
ing maximally mixed ancillas.

Definition 2. By NLOCC operations on bipartite system
of nAB qubits we mean all operations that can be composed
out of sid local unitary transformations,sii d sending the sub-
system down the completely decoheringsdephasingd chan-
nel, siii d adding ancilla in the maximally mixed state, and
sivd discarding the local subsystem.
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As in CLOCC we can decomposesii d into siiad and siibd.
CLOCC operations are more basic than NLOCC. Namely,
the latter can be treated as CLOCC with an additional re-
source: an unlimited supply of maximally mixed states
swhich have zero informational contentd. Indeed, similarly as
in Sec. II B one can argue that the operation of the local
partial trace is not essential.

IV. LOCALIZABLE INFORMATION
AND INFORMATION DEFICIT

In this section we define the central quantity:the informa-
tion deficit. To this end we will first introduce the notion of
localizable information. To be more precise, we will first deal
with the single-copy case and define basic quantities on this
level. Then we will discuss the asymptotic regime, which
will require regularization of the quantities.

Definition 3. The localizable informationI ls%ABd of a state
%AB on Hilbert spaceCdA ^ CdB is the maximal amount of
local information that can be obtained by CLOCC opera-
tions. More formally,

I ls%ABd = sup
LPCLOCC

fIs%A8d + Is%B8dg, s8d

where %AB8 =Ls%ABd, I is the information functionIs%X8d
=NX8 −Ss%X8d; NA8 =log dA8, NB8 =log dB8 are the number of qu-
bits of subsystems of the output state. When one of the num-
bers of qubits is zerosnull subsystemd we apply the conven-
tion that information is zero.

Alternatively, we have the formula

I ls%ABd = N − inf
LPCLOCC

fSs%A8d + Ss%B8dg, s9d

whereN is the total number of qubits. Again, if it happens
that all particles are with one partysi.e., the output dimen-
sion is equal to 1d so that the subsystem of the other party is
null, then we apply the convention that the entropy of such a
subsystem is zero. Further states on the system with one
subsystem null we will call null-subsystem states.

It is important here, that “to obtain local information”
does not mean as usual getting some outcomes of local mea-
surements. Rather it means to apply such an operation, after
which information, as a function of states of subsystems, will
be maximal. Thus, we only deal withstate changesand cal-
culate some functionsinformation functiond on the states.

Actually it is not localizable information which will be
the most important quantity. Rather, the central quantity is a
closely connected one, which we call thequantum-
information deficitsin short quantum deficitd. It is defined as
a difference between the information that can be localized by
means of CLOCC operations and total information of the
state.

Definition 4. The quantum deficitDs%ABd of a state%AB on
Hilbert spaceCdA ^ CdB is given by

Ds%ABd = Is%ABd − I ls%ABd. s10d

Using the definition of localizable informationI l, we get
an alternative formula for the quantum deficit:

D = inf
LPCLOCC

fSs%A8d + Ss%B8dg − Ss%ABd, s11d

where%AB8 =Ls%ABd.
It is important to note that both quantities are functions

not only of a state but also the dimension of the Hilbert
space. This is because CLOCC operations are defined for a
fixed Hilbert space. ThatI l depends on the dimension of the
Hilbert space is even more obvious, because the latter is
explicitly written in the formula. However, in the formula for
the deficit as written in Eq.s11d, the dimension does not
appear explicitly, so it could happen that there is no depen-
dence on dimension. Actually, it is rather important thatD
does not actually depend on dimension; i.e., when one lo-
cally increases Hilbert space by, e.g., adding a qubit in a pure
state,D should not change. This is because, as we will see
later, the deficit will be interpreted as a measure of the quan-
tumness of correlations, which should not change upon add-
ing local ancilla. We will discuss this issue later in more
detail. In particular in Sec. X we will show that regulariza-
tion of the deficitdoes not changeupon adding local ancilla
in a pure state.

A. Interpretation of the quantum deficit:
Measure of “informational nonlocality”

A nonzero deficit means that Alice and Bob are not able to
localize all the information contained within the state. This,
however, means that part of the information is necessarily
destroyed in the process of localizing by use of classical
communication. This part of information cannot survive trav-
eling classical channels. It implies that it must be somehow
quantum. In addition, this part of information must come
from correlations, since information that is not in correla-
tions is already local and need not be localized. We could say
that the quantum deficit quantifies quantum correlations.
However, we will see that in the regime of single copies, the
quantum deficit can besand often isd nonzero for separable
states, which can be generated by local quantum actions and
solely classical communication. It is not clear then if we can
talk here about quantum correlations—can quantum correla-
tions be created by only classical communication between
the parties? However, the quantum deficit being nonzero in-
dicates that there is something quantum in correlations of the
state. One can say that these areclassical correlations of
quantumproperties. We will then propose to interpret the
quantum deficit as the amount of “quantumness of correla-
tions.” Whether it represents also quantum correlations when
regularized is still open.

Let us now discuss the issue in the context of a notion of
nonlocality considered byf10g. The authors exhibited en-
sembles of product states which are fully distinguishable if
globally accessed, but cannot be perfectly distinguished by
distant parties that can communicate only via classical chan-
nels. Then they called this effectnonlocality without en-
tanglement. The reason for using term “nonlocality” was the
following: one can do better if the system is accessible as a
whole, rather than when it is accessible by local operations
and classical communication.
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In our case, the situation is similar: Alice and Bob can do
better in distilling local information if they have two sub-
systems at the same place rather than shared in distant labo-
ratories. Thus, we have a similar kind of nonlocality, and the
quantum deficit is a measure of such nonlocality, which we
can call “informational,” as it concerns the difference in ac-
cess to informational contents. Thus, any state with a non-
zero deficit will be called informationally nonlocalsor non-
local, when the context is obviousd.

B. Classical information deficit of quantum states

It is important to investigate not only the “quantumness”
of compound quantum states, but also the relationships be-
tween their “classical” and “quantum” parts. To this end con-
sider the quantityILO—the information that is local from the
very beginning—i.e.,

ILO = N − SsrAd − SsrBd. s12d

We will call it local information. It represents how much
information each party can extract if only local operations
are performed. We can now define an analogous quantity to
the quantum deficit, on a “lower” level.

Definition 5. The classical deficitf16g of a quantum state
is the difference between local information and the informa-
tion that can be obtained by CLOCCsi.e., by localizable
informationd:

Dc = I l − ILO. s13d

This tells us how much more information can be obtained
from the state by exploiting additional correlations in the
state rAB. Since these correlations are exploitable using a
classical channel, this quantity tells us something about clas-
sical correlations. We will refer toDc as theclassical deficit.
Also, as we will see later, the quantity can be used in the
context of the quantifying of classical correlationssthough it
is not immediate; seef42gd.

C. Restricting resources: Zero-way and one-way subclasses

Additional measures of the quantumness of correlations
which arise when one restricts the communications between
Alice and Bob are as follows.

One can define the one-waysAlice to Bobd deficit sD→d
and one-waysBob to Aliced information deficitsD←d by re-
stricting the classical communication to only be in one direc-
tion. Furthermore, one has also a zero-way deficitsD0”d. The
namezero wayis perhaps confusing. It refers to the situation
where no communication is allowed between Alice and Bob
until after they have completely dephasedsor performed
measurements ofd their systems. After they have done this,
they may then communicate in order to exploit theswhat are
nowd purely classical correlations in order to localize the
information. These restricted deficits correspond to locally
accessible informationI l

→, I l
←, andI l

0”.

D. Asymptotic regime: Distillation of local information
as a dual picture to entanglement distillation

In this section we will argue that the idea of localization
of information, though at a first glance exotic, can be recast

in terms typical for quantum information theory, where of
central importance are manipulations over resources. Even
more, our present formulation will be analogous to the
scheme which is a basis for entanglement theory: entangle-
ment distillation. We will use the interpretation of the infor-
mation function as the amount of pure qubits one can draw
from a state in the limit of many copies.

Instead of singlets our precious resource will be a pure
local qubit. The aim of Alice and Bob is, given many copies
of state%AB to distill the maximal amount of local pure qu-
bits by means of CLOCC operationssin entanglement theory,
we had LOCC operations; however, here we need CLOCC;
otherwise, one could add for free states, and the maximal
distillable amount of pure local qubits would be infinited.
One way of doing that is the following: Alice and Bob take
state%AB, apply the CLOCC protocol that optimizes the for-
mula for localizable information—i.e., they obtain state%AB8
which has maximal local informationIA8 and IB8. They apply
such a protocol to every copy of the state they share. As a
result they obtain many copies of state%AB8 . Now, Alice in
her laboratory, can apply a protocol of drawing pure qubits
out of her state%A8

^n, obtaining IA8 pure qubits. The same
does Bob. Finally, they possessIA8 + IB8 pure local qubits
which is equal just to localizable information, and actually it
is the best they can do, when acting first on single copies
using communication, and only locally performing collective
actions on many copies.

Alice and Bob could do better when they act collectively
from the very beginning. In this way we get that the optimal
amount of local pure qubits that can be distilled by CLOCC
is equal to regularization of localizable information:

I l
` = lim

n

I lsr^nd
n

. s14d

Similarly we can define the regularized quantum and classi-
cal deficits

D` = lim
n

Dsr^nd
n

, Dc
` = lim

n

Dcsr^nd
n

. s15d

Thus we conclude that regularizations of our quantities have
operational meaning connected to the amount of pure local
qubits which can be distilled out of a large number of copies
of the input state by means of different resourcessglobal
operations, CLOCC, local operationsd. Let us emphasize
here that when Alice and Bob are given a single copy of
state, they usually cannot distill pure qubits. When they are
given many copies, the ultimate amount of distillable pure
qubits is described by regularizedI l. Thus the nonregularized
quantity does not represent the amount of pure qubits that
can be drawn either from single copy or from many copies.
However, since in the definition ofI l there is an information
function that has operational asymptotic meaning, thenI l
also has some asymptotic interpretation, representing the
amount of pure local qubits that can be drawn when at the
stage of communication, Alice and Bob operate on single
copies, and only after that stage operates collectively.
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In entanglement theory, there is a similar situation with
entanglement of formation and entanglement cost. The first
is not the ultimate cost of producing a state out of singlets,
though it already contains “some asymptotics” by
definition—the von Neumann entropy, which is the
asymptotic cost of producing pure states out of singlets. The
ultimate cost of producing states out of singlets is the regu-
larization of entanglement of formation.

Finally, one can also consider the amount of local infor-
mation that can be distilled by means of one-way classical
communication. It is equal to the regularized one-way quan-
tum deficitD→. In a similar vein we can consider regulariza-
tions of other quantities based on restricted resources, such
as Dc

→, D0”, Dcl
0” , etc. Again, all those regularizations have

operational meaning.

E. Additional local resources

One of the basic features of the paradigm is that adding
local ancillas is not for free. The reason is that, otherwise, all
the quantities would become trivial. However, there are two
kinds of local resources that still can be taken into account.

First of all, we can allow adding for free local ancillas in
a maximally mixed state. Thus given a state%AB we can ask,
what about the quantities of interest for the state%AB
^ IA8 /d? Note here that this would mean thatI l

` does not
change if we use the NLOCC class instead of CLOCC. In-
deed, as have already mentioned, the only difference be-
tween two classes for the problem of distillation of local
information may appear when adding local maximal noise
could help. In general, upon adding such local noise, local-
izable information could only go up. However, it is more
likely that it will not change. In fact, Devetak has shownf20g
that the one-way deficit does not change upon adding noise.
We were not able to show the same in the case of two-way
communication, though we believe it is also the case.

The second possibility isborrowing local pure qubits.
This would be the most welcome, as it would mean that the
deficit does not depend on the dimension of the Hilbert space
as discussed in the introduction of Sec. IV. We actually show
that it is the case for the regularized deficit in Sec. X. For the
one-way case it is shown also in the asymptotic regime in
f20g.

There is a more general possibility: borrowing local an-
cilla in any mixed state. However, in the asymptotic limit,
this is actually equivalent to borrowing noise and pure qu-
bits, as in that regime any state can be reversibly composed
out of noise and pure qubitsf15,24g.

F. An example: Pure states

As we have mentioned, in our definition of quantum cor-
relations, we do not speak about entanglement at all. We do
not work in the established paradigm of the optimal rate of
transformation to or from maximally entangled statesf43g.
We consider distillation of pure product states. Thus, it was
perhaps surprising to findf14g that for pure states, this defi-
nition of the quantumness of correlations is just equal to the
unique asymptotic entanglement for pure statesf37,43g.

We shall now see that by taking as an example the Bell
state

uc−l =
1
Î2

su00l − u11ld. s16d

It is a two-qubit state of zero entropy, so its informational
content, as given by Eq.s1d, is I =2. We will now see that
I l =1. Clearly, without communicating, neither party can
draw any information from the state, since locally, the state is
maximally mixed. It turns out that the best protocol is for
Alice to send her qubit down the dephasing channel. After
she has done this, Bob will hold the classically correlated
state

rCC =
1

2
su00lk00u + u11lk11ud s17d

from which one can extract 1 bit of information by perform-
ing a CNOT gate to extract one pure stateu0l. We thus have
that D=1. One can actually view this process in terms of
measurements and classical communication, as long as we
keep track of the measuring device. Alice performs a mea-
surement on the state to find out if she has au0l or u1l. She
then tells Bob the result. Bob now holds a known state, with-
out having to perform any measurement. Alice, on the other
hand, had to perform a measurement to learn her state. The
informational cost of the measurement is 1 bit since a mea-
suring apparatus is initially in a pure state and must have two
possible outcomes. After the measurement, the measuring
device needs to be reset. The classical state-correlated state
rCC, if held between two parties, hasD=0. That the process
is optimal for the singlet state is obvious, as this is actually
the only thing which Alice and Bob can do given a single
copy. However, it is highly nontrivial to show that the regu-
larization of a I l is still the same. The optimality of this
protocol also in many copy case was shown inf15g. It also
follows from the general theorem we give in this paper,
which connects the deficit with the relative entropy distance
from some set of states.

In general, it is not hard to see that for an arbitrary pure
state, the same protocol can be used with Alice first perform-
ing local compression on her state. For any pure stateuclAB,
the two-wayD is given byf14,15g

Dsucld = S„trAsuclkcud….

Thus, for pure bipartite states, the quantum deficit is equal to
entanglement. It is quite interesting that we have obtained
entanglement bydestroyingentanglement.

V. DEFICIT AS THE PRODUCTION OF ENTROPY
NECESSARY TO REACH PSEUDOCLASSICALLY

CORRELATED STATES

In this section we will show that the quantum deficit can
be interpreted as the amount of entropy one has to produce in
the process of transforming a given state into a so-called
pseudoclassically correlated statef14g. This expression of
deficit makes it possible to define the entropy production
connected with a given subset of states. For example, we can
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then speak about the entropy production needed to reach the
set of separable states. In this way our paradigm provides a
consistent definition of thethermodynamical cost of erasure
of entanglement, while the original deficit can be called the
thermodynamical cost of erasing quantum correlations.

A. Important classes of states

Let us first define sets of states which are important for
our analysis. Notice that in place of a simple dichotomy be-
tween separable and entangled statesf44g, one can have a
whole hierarchy of levels of quantumnessf45g. Already
Werner recognizedf44g that within entangled states there
might be ones that do not violate Bell’s inequalitiesscf.
f46,47gd. One may also go in aconversedirection and within
separable states find a subclass which is most classical and
wider classes which are still somehow classical, though in
some sense to a lesser degreescf. f11gd.

First, let us consider a set if states which we choose to call
properly classically correlatedor, shortly, classically corre-
lated. These are states of the form

% = o
i j

pij uilki u ^ u jlk j u, s18d

wherehuilj and hu jlj are local bases. Thus any such state is
the classical joint probability distribution naturally embed-
ded into a quantum state. Note that the set of classically
correlated states is invariant under local unitary operations.
The states are diagonal in a special product basis, which can
be called thebiproduct basis.

Now let us define the set of states of our central interest.
We will call them pseudoclassically correlated statesand
denote them byPC. These are the states that can berevers-
ibly transformed into classically correlated ones by CLOCC.
“Reversibly” means that no entropy is produced during the
protocol. This implies that no dephasing is needed in trans-
formations: Alice and Bob use only unitaries and sending
subsystems such that dephasing does not change the total
state. Thus they can send only such subsystemsX, which are
in the following state with the restR: rXR=oipiuilXli u ^ ri

R.
The states that can be in such a way transformed into clas-
sical ones can be also described as the set of states which
Alice and Bob can create under the allowed class of opera-
tions sCLOCCd out of classical states. The eigenbasis of
these states was called animplementable product basissIPBd
in f15g, since it is the eigenbasis that Alice and Bob are able
to dephase in.

Let us note that one can have an intermediate class,one-
way classically correlatedstates, which are of the form

% = o
ii

pii uilki u ^ %i . s19d

These are states which can be produced out of classically
correlated states by one-way reversible CLOCC. They are
diagonal in basis which is of the formhuiluck

sidlj wherehuck
sidlj

are bases themselves.
The above sets arepropersubsets of separable states, and

all the inclusions between them are proper too.

B. Formula for the quantum deficit in terms
of pseudoclassically correlated states

Any protocol of attaining the information deficit looks as
follows: Alice chooses a subsystem of her system, dephases
it, and then sends it to Bob. Bob then chooses a subsystem
from his systemswhich now includes his original system and
the system sent by Aliced. He dephases his chosen part and
sends it to Alice. They can send the states using an ideal
channel, as the sent subsystems are already dephased. Thus
sending is here only reallocating subsystems, nothing more.
Alice and Bob continue such a process as long as they wish.
When they decide to stop, the final step isr8 and the ob-
tained local information is equal toN−SsrA8d−SsrB8d while
the initial total information wasI =N−SsrABd. Thus the defi-
cit obtained in a particular protocolP is DP=SsrA8d+SsrB8d
−SsrABd. Alice and Bob wish this quantity to be minimal.
Suppose then that they preformed an optimal protocol, for
which indeed this value is minimal.

There are two cases:sid one of subsystems is nullsall
particles with the other partyd or sii d both parties have sub-
systems that are not null. Note that in the second case the
system must be in a product state. Suppose it is not. Then,
Alice and Bob can dephase the state in the eigenbasis of
states of local subsystems. This will not change local entro-
pies, but will transform the state into a classically correlated
one. Then Alice can send her part to Bob, so that the infor-
mation contents of the total state will be unchanged. How-
ever, if only the state was nonproduct, the total information
was greater than the sum of local information. This means
that the protocol was not optimal, so that we have contradic-
tion.

Thus we conclude that the optimal protocol ends up with
either product state or state of a system, which one of the
subsystems is nullsall particles either with Bob or with Al-
iced. Even more, when a state is a product, one of the sub-
systems can be sent to the other party, so that the whole
system is with one party. This is compatible with the philoso-
phy of “localizing” of information.

However, it turns out that we can divide the total process
of localizing of information into two stages:

sid Irreversible stage: transforming input state% into
some pseudoclassically correlated one%8.

sii d Reversible stage: localizing information of the state
%8.
In the first stage Alice and Bob try to produce the least en-
tropy. The amount of information that they are able to local-
ize is determined by this stage. In second stage, the entropy
is not produced, and the information is constant.

We have the following proposition.
Proposition 1. The quantum deficit is of the form

D = inf
P

fSsr8d − Ssrdg, s20d

where the infimum is taken over all CLOCC protocols that
transform initial stater into pseudoclassically correlated
stater8.

Proof. The proof actually reduces to noting that
pseudoclassically correlated states can be reversibly created
from states with one null system. Simply, by definition
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pseudoclassically correlated states can be reversibly pro-
duced out of classically correlated states. The latter, in turn,
can be reversibly produced out of one-subsystem states.
Thus, consider an optimal protocol for drawing local infor-
mation. As we have argued, it can end up with a one-
subsystem state. Out of the state we can reversibly create a
classically correlated state which is a special case of
pseudoclassically correlated states. Conversely, suppose that
we have a protocol that ends up with a pseudoclassically
correlated state. Then one can reversibly transform it into a
one-subsystem state. h

Thus the quantum deficit is equal tominimum entropy
production during the process of making the state be
pseudoclassically correlated by CLOCC operations. In other
words, to draw an optimal amount of local information from
a given state, one should try to make it a pseudoclassically
correlated state in the most gentle way—i.e., producing the
least possible amount of entropy. Once the state is
pseudoclassically correlated, the further process of the local-
ization of entropy is trivial. The first stage is illustrated in
Fig. 2.

C. Defining the cost of erasing entanglement

The above formulation of the deficit allows one to gener-
alize the idea of the thermodynamical cost to other situa-
tions. Namely, instead of the set of pseudoclassically corre-
lated states one can take any other set and ask the same
question: how much entropy must be produced, while reach-
ing this set by use of CLOCC. Thus our concept of localizing
information allows us to ascribe thermodynamical costs to
other tasks than localizing information. With any chosen set
we can associate a suitable deficitDSet. An important appli-
cation of this concept is to take a set of separable states.
Then the associated deficitDsep has an interpretation of the
thermodynamical cost of erasing entanglement. As such it is
a good candidate for an entanglement measure. In this paper

we will show that it is bounded from below by the relative
entropy of entanglement. Since the set of separable states is a
superset of pseudoclassically correlated states, we have

Dsepø D, s21d

so that the cost of erasing all quantum correlations is no
smaller than the cost of erasing entanglement. For the sake of
further proofs, let us put here a formal definition ofDsep.

Definition 6. The thermodynamical cost of erasing en-
tanglementDsep is given by

Dsepsrd = inf
P

fSsr8d − Ssrdg, s22d

where the infimum runs over all CLOCC protocolsP which
transform initial stater into a separable output stater8

VI. RELATIONS BETWEEN THE DEFICIT
AND RELATIVE ENTROPY DISTANCE

In this section we will present the proof of the theorem
relating the deficit to the relative entropy distance obtained in
f15g.

Theorem 1. The information deficit is bounded from
above by the relative entropy distance from the set of
pseudoclassically correlated states:

Ds%ABd ø inf
sPPC

Ss%ABusd ; Er
PC, s23d

whereSs% usd=tr% log %−tr% log s.
Let us first prove the proposition.
Proposition 2. Localizable information and the deficit sat-

isfy the following bounds:

I ls%d ù N − inf
BPIPB

Hs%,Bd, s24d

Ds%d ø inf
BPIPB

Hs%,Bd − Ss%d, s25d

where Hsr ,Bd denotes the entropy of diagonal entries of
stater in basisB,

Hsr,Bd = − o
i

pi log pi , s26d

with pi =kciurucil, with ci PB.
Proof. We will exhibit a simple protocol to achieve a rea-

sonablesand perhaps optimald amount of local information.
Namely, Alice and Bob choose some implementable basisB
and dephase a state in such a basis. They can do this, as, by
definition, an IPB is a basis in which Alice and Bob can
dephase by use of CLOCC. The final state has entropy

Ssr8d = Hsr,Bd. s27d

Alice and Bob can now choose the basis that will produce
the smallest possible entropyHsr ,Bd. In this way we obtain
the following bound forD:

D ø inf
BPIPB

Hsr,Bd − Ssrd. s28d

This ends the proof of proposition. h

FIG. 2. CLOCC protocol of concentration of information to lo-
cal form is a series of actions aiming to reach the set of pseudoclas-
sically correlated states. The solid lines denote reversible actions:
sending dephased qubits or local unitary transformations. The dot-
ted lines denote dephasings. The goal is to make the total entropy
increaseDS=DS1+DS2+¯ minimal. Then the deficit is given by
D=DS, because once the state is pseudoclassically correlated, its
full information content can be localized.
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Let us now express this bound in terms of the relative
entropy distance. This is done by the following lemma.

Lemma 1. Given a state%,

Hs%,Bd = inf
sPSB

Ss%usd + Ss%d, s29d

whereHs% ,Bd is the Shannon entropy of the probability dis-
tribution of the outcomes when% is measured in a given
basisB andSB is the set of all states with eigenbasisB.

Proof. We have

inf
sPSB

Ss%usd + Ss%d

= inf
sPSB

f− trs% log2sdg

= − trs%B log2 %Bd + trs%B log2 %Bd

+ inf
sPSB

f− trs%B log2 sdg

= Ss%Bd + inf
sPSB

Ss%Busd = Hs%,Bd. s30d

Here%B is the state% dephased in the basisB. In the second
equality, we have used the fact that trs% log2sd
=trs%B log2sd, becauses is diagonal in the basisB. In the
fourth equality, we have used that%B belongs to the setSB so
that infsPSBSs%B usd=0 and also thatSs%Bd;Hs% ,Bd. This
ends the proof of the lemma. h

Now combining the lemma with the proposition we obtain
the above theorem. We have not been able to prove equality,
and in Sec. VI C we discuss the origin of the difficulties.

A. Deficit, cost of erasure of entanglement,
and relative entropy of entanglement

In the previous section we have reproduced the result of
f15g which provided an upper bound for the deficit in terms
of the relative entropy distance from pseudoclassically cor-
related states. In this section we will prove a new result,
providing a lower bound for the deficitin terms of an en-
tanglement measure—the relative entropy of entanglement.

Theorem 2. For any bipartite stater the quantum deficit is
bounded from below by the relative entropy of entangle-
ment:

Dsrd ù Ersrd. s31d

To prove the above theorem it is enough to show that
Dsep—the cost of erasing entanglement—is lower bounded
by Er, which is the contents of the next theorem. Indeed, by
definition of Dsep and by the proposition 1 the deficit is no
smaller thanDsep.

Theorem 3. For any bipartite stater the cost of erasing
entanglement is bounded from below by the relative entropy
of entanglement:

Dsepsrd ù Ersrd. s32d

To prove this theorem we will need the following lemma.
Lemma 2. Consider any subsetSof states, invariant under

product unitary transformations. Then the relative entropy
distance from this setEr

S given by

Er
S= inf

sPS
Ssrusd s33d

decreases no more than the entropy increases under local
dephasing—that is,

Er
Ssrd − Er

S
„Lsrd… ø S„Lsrd… − Ssrd, s34d

whereL is local dephasing.
Proof. Note first that local dephasing can be represented

as a mixture of local unitaries:

Lsrd = o
i

piUA
i

^ IBrUA
i †

^ IB. s35d

Indeed, consider any set of projectorshPjj1
k. The suitable

unitaries are given by

Uss1, . . . ,skd = o
j=1

k

sjPj , s36d

wheresj = ±1 are chosen at random. Thuspi’s are equal, but
this is irrelevant for our purpose.

Now, let us rewrite the inequalitys34d as follows:

Er
Ssrd + Ssrd ø S„Lsrd… + Er

S
„Lsrd…. s37d

Thus we have to prove that the functionfsrd=Er
Ssrd+Ssrd is

nondecreasing under dephasing. This is a somehow parallel
result to the result off48g where it was proved that the above
function does not decrease undersglobald mixing. The proof
is directly inspired byf49g.

We have

fsLsrdd = inf
sPS

− trLsrdlog s = inf
sPS

o
i

pitrri log s

ù o
i

pi inf
sPS

trri log s = o
i

pi inf
sPS

trr log si

= o
i

pi inf
sPS

trr log s = fsrd, s38d

where ri =UA
i

^ IBrUA
i †

^ IB and si =UA
i †

^ IBsUA
i

^ IB. The
inequality comes from the properties of the infimum; the last
but one equality comes from the fact that the setS is invari-
ant under product unitary operations. This ends the proof of
the lemma. h

Proof of theorem 3. The basic ingredient of the proof is
the monotonicity of the functionfsrd=Ersrd+Ssrd under
CLOCC.sIn entanglement theory important functions are the
ones that cannot increase under a suitable class of operations,
while here we need a function that does notdecreaseunder
our class of operations. This once more shows that our ap-
proach is in a sense dual to the usual entanglement theory.d
As we have already discussed, any CLOCC operation can be
decomposed into basic ones:sid local unitary transformation,
sii d local dephasing, andsiii d noiseless sending of dephased
qubits. Of course the local unitary operation does not change
either the entropy orEr, so that the functionf remains con-
stant. The lemma we have just proved tells us that local
dephasing can only increase the functionf. Consider now the
last component—sending dephased qubits. Clearly the en-
tropy again does not change during such operations. It re-
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mains to show thatEr does not change under sending
dephased qubits. Consider the staterABB8 with one dephased
qubit B8 on Bob’s site. Consider the closest separable state to
the statesABB8. Since the relative entropy of entanglement is
in particular monotone under dephasings, we can choose this
state to have the qubitB8 dephased too. Consider then the
staterAA8B, whereA8 qubit is theB8 qubit after being sent by
Bob. We now apply the procedure of sending qubitB8 to the
statesABB8 and obtain a new separable statesAA8B. By con-
struction we haveSsrABB8 usABB8d=SsrAA8BusAA8Bd. Thus Er

could only go down. However, we can repeat the reasoning
with the qubit sent in the converse direction and conclude
that Er does not change.

In this way we have shown that the functionf cannot
decrease under CLOCC operations. This means that for any
protocol that brings the initial stater to a final separable state
r8 we have

fsr8d ù fsrd. s39d

However, the target state is separable; hence, it hasEr =0.
We obtain

Ssr8d − Ssrd ù Ersrd, s40d

which tells us that in any protocol that ends up with a sepa-
rable state, the increase of entropy is no smaller than the
relative entropy of entanglement. This ends the proof.h

B. Connection with bounds obtained
via semidefinite programming

In f19g semidefinite programming techniques were used
to obtain lower bounds on the regularized deficit. The fol-
lowing general bound was obtained:

D`srd ù sup
s

f− log2 lmaxsusGud − Ss%d − Ss%usdg, s41d

wherelmax denotes the greatest eigenvalue andG is the par-
tial transposition of the matrix. The value of the bound has
been calculated for Werner states and isotropic states. It
turned out that for those states it is exactly equal to the regu-
larized relative entropy of entanglement. This is compatible
with theorem 3. It is interesting, what is the general relation
of the bounds41d with regularizedEr.

C. Discussion of the problem of “noncommuting choice”

We have proved that the deficit satisfies the inequality

Er
PC ù D ù Er . s42d

Yet we have not been able to prove thatD=Er
PC. Let us

discuss the main obstacles which we encountered. The ques-
tion is actually as follows: Can there be a better protocol than
dephasing in an optimal IPB basis? The latter protocol has
some fundamental features. Namely, in the series of subse-
quent local dephasings, each dephasing is compatible with
the previous one in the sense that they commute with each
other. In other words, each dephasing is in some sense ulti-
mate: it divides the total Hilbert space into blocks, so that all
subsequent dephasings are performed within blocks and in a

basis that is compatible with the blocks. Another way of
viewing it is to say that what was sent from Alice to Bob or
vice versa will remain classical—that is, diagonal in a fixed
distinguished basis. The main open question is now the fol-
lowing: Is it enough for Alice and Bob to follow this restric-
tion, or should they violate this rule to draw more informa-
tion?

We can formulate this fundamental problem in a more
tractable way if we look through the proof of theorem 3 and
find where the proof fails if instead of separable states one
takes pseudoclassically correlated states. Almost the entire
proof can be carried forward without alteration, apart from
one small item: the invariance ofEr

PC under sending
dephased qubits.Er was invariant mainly because we could
choose the closest separable state to be also dephased on that
qubit. This is because the set of separable states is closed
under local dephasings. However, the set of pseudoclassi-
cally correlated states is not. It does not rule out the possi-
bility that indeed the closest pseudoclassically correlated
state has the qubit dephased. However, we were not able to
prove it or disprove. We will formulate here the problem in a
formal way.

Problem. Consider a bipartite state that can be written in
the following form:

rAB = p1rAB
1 + p2rAB

2 , s43d

whererAB
1 and rAB

2 are orthogonal on subsystemA; i.e., the
reduced statesrA

i have disjoint support. Can the closest
pseudoclassically correlated state in the relative entropy dis-
tance be written in this form?

D. Deficit and relative entropy distance for one-way
and zero-way scenarios

Finally let us note that the needed results can be obtained
easily for one-way and zero-way scenarios. The problem
with the two-way scenario is that Alice and Bob could draw
more information than they obtain by measuring in an opti-
mal IPB basis. The source of the difficulty was that in a
many rounds protocol, Alice and Bob could make dephasings
that would not commute with dephasings they made in a
previous step. In the case of the one-way scenario there is no
such danger, as there is only one round. The zero-way situ-
ation is simplest. The only thing Alice and Bob can do is to
dephase the subsystems in some bases, and the only problem
is to find the optimal basissso that they will produce the
smallest amount of entropyd. The versions of lemma 1 in the
one-way and zero-way cases can be proved in the same way.
Thus in those cases the deficits are equal to the relative en-
tropy distance to the two sets of states—classically correlated
states and one-way classically correlated statess19d.

E. Multipartite states

We can define a set of pseudoclassically correlated states
also in the case of multipartite states. Then one can formulate
a version of theorem 1 in the latter case. Since the arguments
we have used did not depend on the number of parties, theo-
rem 1 is then true also in the multipartite case. Similarly
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theorems 2 and 3 also hold in the multipartite case.

VII. BASIC IMPLICATIONS OF THE THEOREM
(INFORMATIONAL NONLOCALITY)

The theorems from the previous section allow us to obtain
the following results for both bipartite as well as multipartite
states.

sid D is no smaller than distillable entanglementED:

D ù ED. s44d

Indeed, the latter is bounded from above by the relative en-
tropy of entanglementf50g.

sii d Moreover, theorem 3 implies that the quantum deficit
is no smaller than coherent information:

Dsrd ù SsrXd − Ssrd, s45d

whereX=A,B,C, . . . . or

Isrd ø N − SsrXd. s46d

This is because it was proved that in the bipartite casef51g,
the relative entropy of entanglement is bounded from below
by coherent informationSX−S. For multipartite states, one
gets it by noting that the multipartite relative entropy of en-
tanglement is no smaller than the one versus some bipartite
cut. Then one applies the mentioned bipartite result.

siii d Any entangled state is informationally nonlocal; i.e.,
it has a nonzero deficit:

Ds%entangledd . 0. s47d

This follows from the fact that when a state is entangled,
then it has a nonzero relative entropy of entanglement.

Note, however, that there existseparablestates which are
informationally nonlocal:

Ds%separabled . 0, s48d

for some separable states. We will now discuss an example
of such a state and relate it to so-called “nonlocality without
entanglement.” Whether such an effect survives in the
asymptotic limit of many copies is unclear.

sivd Theorem 3 allows for easy proof that for pure bipar-
tite states the deficit is equal to entanglement. Indeed, from
the theorem we have that the deficit is no greater than en-
tanglement. On the other hand, a simple protocol of dephas-
ing Alice’s state in the eigenbasis of the state of her sub-
system and sending it to Bob gives the amount of
information 2 logd−SsrAd. Thus the deficit is also no greater
than the entropy of the subsystem. However, the latter is
equal to the relative entropy of entanglementsthis is a reflec-
tion of the fact that in the asymptotic regime there is only
one measure of entanglement for pure statesd. For multipar-
tite pure states there does not exist a unique entanglement
measure. We have the following open question:For multi-
partite pure states, is the deficit equal to the relative entropy
of entanglement?That is,

Erscd=
?

Dscd. s49d

If so, the deficit would be an entanglement measure for all
pure states. And since the deficit is an operational quantity,

we would have anoperationalinterpretation for the relative
entropy of entanglement for pure states.

Note here that in general the deficit is not a monotone
under LOCC and even under CLOCC. In contrast,I l is a
monotone under CLOCC.

svd From the above reasoning and theorem 3 it follows
that thethermodynamical cost of erasure of entanglement of
pure states is equal to their entanglementscf. f14,15gd.

A. Nonlocality without entanglement
and with distinguishability

One form of nonlocality we are familiar with is entangle-
ment. Another form of nonlocality was introduced inf10g:
the so-callednonlocality without entanglement. There, it was
shown that there are ensembles of states, which, although
product, cannot be distinguished from each other under
LOCC with certainty. Ensembles of product states can have a
form of nonlocality. Other ensembles were exhibited which
were distinguishable, but distinguishing was thermodynami-
cally irreversible. This can be thought of asnonlocality with-
out entanglement but with distinguishability. All those results
were done for ensembles.

Here we report a similar kind of nonlocality for states.
Namely, we will exhibit states which are separable and
which can be created out of ensembles of distinguishable
states but which contain unlocalizable information such that
DÞ0 sat least for single copiesd. In fact, one can find such
states which have an eigenbasis where each eigenket is per-
fectly distinguishable.

An example is the state given by

r =
1

4
u00lk00u +

1

4
u11lk11u +

1

2
uc−lkc−u. s50d

It is a separable state, which can be seen either by construc-
tion or because it has a positive partial transpose which is a
sufficient condition for dimension 2̂2. Its eigenketsu00l,
u11l, uc−l are clearly perfectly distinguishable under LOCC,
since Alice and Bob just need to measure in the computation
basis and compare results to know which of the three basis
states they have. Nonetheless, it clearly has nonlocalizable
information. To localize all the information, one would need
to dephase it in the basisu00l, u11l, uc−l, but this cannot be
done under CLOCC, since one cannot dephase using a pro-
jector onuc−l. The proof follows from theorem 2—we know
that the optimal protocol is for Alice to dephase her side in
some basis and then send the state to Bob. Indeed, for two
qubits, all implementable product bases are one-way imple-
mentable; i.e., they are of the formhuiluck

sidlj where huck
sidlj

are bases themselves. Thus for the one-copy case, which we
consider here, the optimal protocol is a one-way protocol.
Since the state is symmetric, then it does not matter which
way sfrom Alice to Bob or vice versad.

A direct calculation shows that the optimal basis isu0±1l
at one of the sites. This yieldsI l =3/4 log 3−1, while
I =1/2,giving a value ofD=0.1887. There are thus separable
states which exhibit nonlocality in that all the information
cannot be localized even though all the basis elements of the
state are perfectly distinguishable.
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VIII. INFORMATIONAL NONLOCALITY
OF MULTIPARTITE STATES

The approach considered here turns out to be quite valu-
able in the case of multipartite states. One of the reasons for
this is that one cannot only quantify the quantumness of
correlations along various splittings, as is commonly done,
but one can also look at the total amount of localizable in-
formation that a given state possesses if all parties cooperate.
In other words, in addition to the variousvector measures
defined for a particular splitting of the state—e.g.
ABuCD—one also has ascalar measurewhich is defined for
the state as a whole. One can calculateD for various bipartite
splittings by grouping parties together, or one can calculateD
for the entire state. In fact, one can consider all possible
groupings, such asABuCDuEF, etc. This allows one to ex-
plore multipartite correlations in more detail and also allows
one to ascribe a single quantity to a particular state in order
to rank various states in terms of their total quantum corre-
lations.

By considering a family of states for a number of parties,
N, one can calculate the information deficit per party
DsrNd /N, and we find that it goes to zero for the generalized
GHZ and to 1 for the Aharonov state, asN goes to infinity.
Of the states we consider, we shall thus find that the GHZ
state is the least informationally nonlocal, while the so-called
Aharonov state is the most informationally nonlocal.

A. Schmidt decomposable states

The information deficit for theN-party GHZ state,

ucNGHZl = u111 . . . 1l + u222 . . . 2l + ¯ + uNNN. . .Nl,

s51d

where we depart slightly from convention by taking the di-
mension of each party state to also scale likeN. This state is
thus more entangled than if one were to give each party a
qubit, and we do so in order to fairly compare our results
with other entangled states. The deficit for the GHZ was
calculated in f14g where it was found to beDscNGHZd
=log N. Essentially, once one party makes a measurement,
all the other parties can learn which state they have without
performing a measurement, and thusI l =sN−1dlog N, while
the total state is of dimensionNN, and henceI =N log N.
Therefore,

lim
N→`

DscNGHZd/N = 0. s52d

This is in keeping with the notion that the GHZ state is rather
fragile, since if only one of the qubits becomes dephased, the
entire state becomes classical.

One can generalize this to any multipartite state which
can be written in a Schmidt basis; i.e.,

ucNSl = o
i

cip
n=1

N

ufNil. s53d

In that case, one findsDscNSd=SsrAd whererA is any of the
subsystem entropiessthey are all equald. This follows di-

rectly from inequalitys46d and it holds in the asymptotic
regime of many copies.

B. Example of a non-Schmidt decomposable state:
The W state of three qubits

A more complicated example is the “W state” f52g

ucWlABC=
1
Î3

su100l + u010l + u001ld.

and we ask the question of how much localizable informa-
tion I l can be extracted under one-way CLOCC by using it as
a shared state. Since each party only has one qubit, we can
use theorem 2 to calculate it. This is because if each party
only holds a single qubit, the optimal protocol will only need
one-way communication and will be equivalent to having
one-party measure, and then tell her results to the other par-
ties who will then hold a pure state between them.

Let Alice measure her part of the state in basishueilj and
send the result to Bob and Charlie. After the measurement,

ucWlABC→ %ABC= o
i

piueilkeiu ^ %BC
i . s54d

Then Alice obtains the ensemblehpi , ueilj. Bob and Charlie
obtain the ensemblehpi ,%BC

i j. %BC
i are of course pure states.

Bob and Charlie know which of the statesh%BC
i j they have,

because they have obtained information about the result of
the measurement by Alice. Therefore, the total amount of
information that can be extracted fromucWlABC locally by
such a protocol is given by

Is%Ad + p1I ls%BC
1 d + p2I ls%BC

2 d, s55d

where%A=oipiueilkeiu so that

Is%Ad = 1 −Hshpijd s56d

and wheressince%B
i are pured

I ls%BC
i d = 2 −Ss%B

i d, s57d

with %B
i being the reduced density matrix of%BC

i . So for an
arbitrary von Neumann measurement, we have that for theW
state,I l is given by

I lscWd = 3 −Hshpijd − o
1

2

piSs%B
i d = 3 −HS1 + uxu2

3
D

−
1 + uxu2

3
HS1

2
+

Î− 3uxu4 + 2uxu2 + 1

2 + 2uxu2
D

−
2 − uxu2

3
HS1

2
+

Î4uxu2 − 3uxu4

4 − 2uxu2
D ,

where the measurement is performed in the basishueilj given
by

ue1l = xu0l + yu1l,

ue2l = y* u0l − x* u1l.

One can check that for von Neumann measurements, the
largest amount of local information extractable is 1.450 26. It
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is achieved for measurements in the basishueilj, where either
x2=1/3 or x=2/3 ssee Fig. 3d. Contrary to naive expecta-
tions, dephasing in the computational basis is the worst
choice. Also the basisu6l sx=1d is not optimal. It is inter-
esting that optimal bases are not incidental. Rather these are
those bases for which the probabilities of a transition intou0l,
u1l states are the same as the probabilities of getting those
states by Alice measuring theW state in basisu0l, u1l. In the
regime of single copies, this protocol is optimal by theorem
2; therefore, for theW state,I l =1.450 26. This is less than
the amount of localizable information for the corresponding
GHZ stateucGHZl=s1/Î2dsu000l+ u111ld; thus, we would ar-
gue that theW state exhibits more nonlocal correlations.

C. Aharonov state and quasiunlocalizable information

We next consider the so-called Aharonov “diamond”
state. It is essentially given by antisymmetrizingN
N-dimensional states. For three parties, the unnormalized
state is

uc3Al = u012l − u021l + u120l − u102l + u201l − u210l
s58d

and in general it is

ucNAl =
1

ÎN!
o

permutations

ea1¯aNua1 ¯ aNl, s59d

where ea1¯aN is the permutation symbolsLevi-Cività den-
sityd.

It has the property that if one party measures their state in
any basis and tells their result to the rest of the parties, they
will then still hold another Aharonov state of dimensionN
−1. Since this is a pure state of dimensionNN, the total
amount of information isI =N log N. On the other hand, un-
der the protocol where the parties take turns measuring, it is
easy to see that after each measurement, the other parties will
still be left with a locally maximally mixed state. However,
the maximally mixed state will reside in a dimension lower
thanN. Finally, there will be two parties left, and they will

share a singlet. One of the parties can convert her pair into
log N−1 bits of information, while the other can get logN.
Thekth party can get logN−log k. The amount of localizable
information is thereforeI l =log NN/N!. This is optimal by
theorem 2 for single copies. We thus have thatDscNAd /N
=log N! / N which goes to 1 in the limit ofN→`. Compared
to the GHZ state of equivalent dimension, the Aharonov state
has far more unlocalizable information. Related behavior has
been found independentlyf53,54g. One might wonder if one
can make the localizable information strictly zero, as is the
case for entanglement with bound entangled states. We will
soon show that this is not the case.

D. General pure three-qubit states

In Sec. VIII A, we considered the localizable information
of Schmidt decomposable states, and in Sec. VIII B, we con-
sidered the W state, an example of a non-Schmidt-
decomposable state.

Let us here consider the general three qubitpure state,
which can be written in the formf55,56g

uclABC= au000l + bu010l + cu100l + du001l + eu111l,

s60d

where onlya need be complex, while the rest of the coeffi-
cients are real. Of course we haveuau2+b2+c2+d2+e2=1.

We again can use theorem 2 to obtain the amount of lo-
calizable information. Let us suppose that AlicesAd mea-
sures in the basis

ue1l = xu0l + yu1l,

ue2l = y* u0l − x* u1l, s61d

and sends the measurement outcome to BobsBd and Charlie
sCd.

Depending on the measurement outcome, Bob and Char-
lie share the state

uce1
l =

1
Îp

„sx*a + y*cdu00l + x*du01l + x*bu10l + y*eu11l…

or

uce2
l =

1
Î1 − p

„sya− xcdu00l + ydu01l + ybu10l − xeu11l…,

corresponding to the outcomeue1l or ue2l at Alice, where

p = usx*a + y*cdu2 + uxu2d2 + uxu2b2 + uyu2e2

is the probability thatue1l is obtained by Alice.
For such a protocol, the localizable information amounts

to

I l = sup
x,y

f3 − Hspd − pSstrAuce1
lkce1

ud

− s1 − pdSstrAuce2
lkce2

udg, s62d

where we maximize overx andy to obtain the highest local-
izable information. This is an optimal protocol, and thus we

FIG. 3. Plot ofI l
x versusx2 for measurement in basiss61d for the

W state. The optimal basis for maximizingI l
x is for Alice to dephase

sor measured with x2=1/3 or 2/3. Thebasisu6l sx2=1/2d is not
optimal.
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obtainI l. Let us denote the quantity in square brackets asI l
xy.

Let us now choose an exemplary one-parameter subclass
from the class in Eq.s60d:

a = e= 0, b = 0.1.

For this class, we plot the localizable informationI l using
real values ofx and y. Taking x=r .0 andy=Î1−r2, I l

xy is
plotted sin Fig. 4d as a function ofr and c. For a givenc
swhich then fixes the stated, the value ofI l can be read from
the figure.

IX. BELL MIXTURES

The state of Eq.s50d is a particular example of a mixture
of Bell states:

uf±l =
1
Î2

su00l ± u11ld,

uc±l =
1
Î2

su01l ± u10ld,

Here, for completeness, we calculateD for all states of
this for so-called Bell-diagonal states. Up to local unitaries,
this includes all 2̂ 2 states with local density matrices that
are maximally mixed. optimization could way classical Due
to theorem 2, we only need consider optimizing are over
projection measurementsswithout adding any ancilla locallyd
at one of the parties—say, Alice. Consider therefore the
mixture

%Bm= p1Pf+ + p2Pf− + p3Pc+ + p4Pc− s63d

of the four Bell states in 2̂ 2.
After an arbitrary projection-valuedsPVd measurement on

Alice’s side, projecting in the basis

hu0̄l = au0l + bu1l, u1̄l = b̄u0l − āu1lj,

let the global state be projected, respectively, to

Pu0̄l ^ %0, Pu1̄l ^ %1. s64d

At this stage, the whole state is essentially on Bob’s side.
This is because we allow dephasing as one of our allowed
operations. Consequently, the locally extractable information
after this set of operations is the von Neumann entropy of

pPu0̄l ^ %0 + s1 − pdPu1̄l ^ %1,

where p is the probability of Alice obtaining the stateu0̄l.
The optimization yields the value

D = 1 +Hsp1 + p2d − Ss%Bmd, s65d

wherep1 andp2 are the two highest coefficients of the Bell
mixture %Bm.

If we consider only von Neumann measurementsswithout
addition of ancillad and if Alice and Bob are not allowed to
make any communication before they perform their measure-
ments, then the zero-way information deficitD0” for the Bell
mixturess63d is given by

1 + Hspmaxd,

where

pmax=
1

2
s1 + umaxht11,t22,t33jud,

with tii =trssi ^ si%Bmd. Note however that in this case, we
are unable to show whether one can do better by positive-
operator-valued measuressPOVM’sd or whether more copies
are useful.

Consider, however, the isotropicd^ d state

%iso = lufmaxl + s1 − ld
I

d2 s66d

in d^ d, where fmax is the maximally entangled state in
d^ d which is invariant underU ^ U* for any unitaryU. The
one-way information deficitD→ sas well asD0”d is given by

D0” = D→ = Sl +
1 − l

d
Dlog2S1 +

1 − l

d
D

+ sd − 1d
1 − l

d
log2

1 − l

d
− log2 d + Ss%isod, s67d

where

Ss%isod = − Sl +
1 − l

d
DlogSl +

1 − l

d
D

−
d2 − 1

d2 s1 − ldlog
1 − l

d2 . s68d

For the isotropic state, it is possible to prove, along the same
lines as for Bell mixtures, that POVM’s as well as more than
one copy cannot help.

FIG. 4. Plot of the functionI l
xy fEq. s62dg for the three-qubit

state in Eq.s60d for the case whena=e=0, b=0.1, in thesc,rd
plane. Herex=r, y=Î1−r2, and r .0. The value of localizable
information I l for a givenc is the supremum ofI l

xy for that value
of c.
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A. Asymptotic regime

For two qubits we easily evaluated the deficit, because
one-way and two-way deficits are equal in this case and be-
cause Alice’s first measurement leaves no room for other
measurements. So the only thing she should do is to commu-
nicate the results to Bob, and communication from Bob is
not needed. In other words, the set of pseudoclassically cor-
related states is equal to the one-way classically correlated
states of the forms19d. Thus it was enough to evaluate only
the one-way deficit. However, if we turn to regularization,
this equivalence is no longer valid. This is because, to cal-
culate regularization, one needs to evaluate the deficit for
many copies. Thus the dimension of the system is high, and
there is room for many rounds. We are not able to regularize
the two-way deficit.

Concerning the one-way deficit, one can argue that it is
additive for Bell diagonal states. Moreover, borrowing qubits
does not helpsit has been independently shown that, in gen-
eral, in the one-way case, borrowing pure local qubits does
not helpf20gd. We will provide the arguments in Sec. XIV A.

X. PURELY NONLOCALIZABLE INFORMATION
DOES NOT EXIST

One important aspect of entanglement theory is the exis-
tence of bound entangled states. These are states which are
entangled in that they require entanglement to create, yet no
entanglement can be drawn from them. In Sec. VIII C we
saw that in the multipartite case, there were states for which
the amount of localizable information per party was small as
the number of parties increases. One can ask whether there is
a strict analogy to bound entanglement: are there states
which have positiveI, but which I l =0. It turns out that the
answer is no; the only state which hasI l =0 is the maximally
mixed state. Here we prove this in the following lemma for
the case of two parties. The generalization to many parties is
straightforward.

Lemma 3.From any state other than the maximally mixed
state we can draw local information.

Proof. Consider a state%,Cd ^ Cd such that%Þ%mmix
= I /d2; then, there exists an observable for which the mean
value in state% has a different value than%mmix. Every non-
local observable can be decomposed into local operators, so
we can always find such an observable of the formA^ B for
which

TrsA ^ Bd% Þ TrsA ^ Bd
I

d2 . s69d

Then

TrsA ^ Bd% Þ
1

d2TrATrB, s70d

o
i j

pijlil j Þ o
i j

1

d2lil j . s71d

Notice that distribution of probability for% in Eq. s71d is
classical. We know that we can obtain a nonzero amount of

local information from any classical state besides the maxi-
mally mixed one. We can see that we are able to find such a
local operation that transforms every state which agrees with
the assumptions of lemma 3 into a state from which we can
draw local information. h

There is an open question whether there exist states for
which localizable information is entirely equal tolocal infor-
mation content, but which nevertheless are not product. In
such a case, one would not be able to draw information from
correlations at all. The classical deficitDc would be zero,
even though the state would be nonproduct. It is rather un-
likely that such states exist, yet we have not been able to
solve this question.

We now prove a related theorem which follows from the
above lemma and which will be useful for the following
section. Namely, we show that using pure states as a resource
cannot help when distilling local information. One can think
of such a process ascatalysiswhere one uses pure states to
produce more pure states from some shared state.

Theorem 4. Local pure ancillas do not help in the process
of distilling local information.

Proof. Assume that catalysis can help in drawing local
information. Consider a state%, which is not the maximally
mixed state, and the optimal protocol of distilling local in-
formation P1, which does not use ancillas. Consider also
another protocolP2, in which we distill information from
some of the copies of state%. Using P1 and then using the
distilled pure states to do catalytic distillation on the rest of
the copies. Notice that we can do this, because we know
from lemma 3 that we can distill local information and thus
also pure states from it. If catalysis is helpful, that means that
usingP2 we are able to obtain more local information than in
the previous protocol. ProtocolP2 does not use ancillas and
is better thanP1, which is optimal. This leads to the required
contradiction.

We showed that catalysis is useless for a state with non-
zero distillable information. It could help only in the case of
states with pure unlocalizable information, but we know
from lemma 3 that such states do not exist. This ends the
proof.

Remark. We know that to do catalytic distillation we need
pure ancillas. One can notice that states which we want to
use in protocolP2 to do catalysis are not exactly pure. But
these states come from distillation, so they are equal in the
limit of many copies tou0l^rn sr is the rate of distillation of
local information andn is the amount of copiesd. This fact
assures us that in the asymptotic regime of many copies we
are able to do catalysis.

XI. CAN CORRELATIONS BE MORE QUANTUM THAN
CLASSICAL?

The total amount of correlations contained in a bipartite
state is given by the mutual information

IM = SsrAd + SsrBd − SsrABd. s72d

One can easily see that our quantities for dividing corre-
lations into ones which behave quantumlysDd and classi-
cally sDcd satisfy

LOCAL VERSUS NONLOCAL INFORMATION IN… PHYSICAL REVIEW A 71, 062307s2005d

062307-17



IM = D + Dc. s73d

In other words, the total amount of correlationssgiven byIMd
can be divided into classical and quantum componentsf16g.
Now one can ask whether the total correlationsIM can be
divided arbitrarily. Certainly for pure states this is not the
case. For pure states, correlations which behave quantumly
cannot exceedI /2. For pure statesc, we showed thatD
=SsrAd, and thus it is always the case thatDscd= IM /2. For
pure states, the quantumness of correlations can never ex-
ceed the classicalness of correlations.

Now one can ask, can it be that one has states for which

Ds%ABd . I/2? s74d

If so, one could think of these states as havingsupersatu-
rated quantum correlations, in that for a given amount of
mutual informationIM they have a greater proportion of cor-
relations which behave quantumly. In this sense, one can
think of such states as being more nonlocal than maximally
entangled states.

One way of approach to the above problem is to work
with the relative entropy of entanglement. We know that both
the relative entropy of entanglementsErd, with the distance
taken from separable states, and the von Neumann entropy
sSABd are not greater than log2 d for d^ d states. Conse-
quently, one hasEr +SABø2 log2 d. Can we have the follow-
ing stronger inequality:

2Er + SABø
?

2 log2 d. s75d

This is tight for maximally entangled states. Because the
deficit is no smaller than the relative entropy of entangle-
ment, it follows that if the inequality is violated, then for
some states inequalitys74d is true, and we would have this
curious phenomenon. On the other side, when the inequality
is satisfied for all states, we would obtain a nice trade-off
between entanglement and noise.

In a recent work, Weiet al. f57g calculatedsfor two-qubit
statesd the maximal possible relative entropy of entanglement
Er sas well as other entanglement measuresd for a given
amount of mixednesssquantified by the von Neumann en-
tropyd. Note that the inequalitys75d would generically hold
for two-qubit states if it is satisfied by these optimal values.
Indeed examining the curves of the above paper, one finds
that for any two-qubit state the inequality is satisfied.

One can also find that for Werner states and maximally
correlated states, the inequality is satisfied too for the regu-
larized relative entropy of entanglement. To see this, the
asymptotic relative entropy of entanglementsErsPPTd

` d fwith
distance taken from states with positive partial transpose
sPPTdg is known for Werner statessmixture of projectors on
symmetric and antisymmetric spacesd in d^ d f58g. One may
check that the relation

2ERsPPTd
` + SAB ø 2 log2 d. s76d

is satisfied for all Werner states in arbitrary dimensions.
However, note here that the relative entropy of entanglement
sfrom PPT statesd is not additive for Werner states.

For the maximally correlated states, the relative entropy
of entanglementsfrom PPT statesd is known to be additive.
Its value is also explicitly known for all such states in
d^ d. Via additivity, this would exactly be equal to its
asymptotic relative entropy of entanglementsfrom PPT
statesd. Precisely, for any state of the form

%mc= o
i j

aij uii lk j j u,

we have

ERsPPTd
` = ERsPPTd = o

i

aii log2 aii − Ss%mcd.

It is easy to check that the relations76d is satisfied by any
%mc in d^ d.

Thus we have not found states for which the inequality
would be violated for the regularized relative entropy of en-
tanglement. It remains an open question whether the trade-
off between noise and entanglement represented by inequal-
ity s75d is universally true or whether there exist states for
which there is more quantum than classical correlations.

XII. ZERO-WAY AND ONE-WAY SUBCLASSES

We now turn to additional measures of the quantumness
of correlations which arise when one restricts the communi-
cations between Alice and Bob. In Secs. IX and VIII such
restrictions were useful for evaluations of perhaps more basic
two-way quantities. However, they are more than just for
ease of calculation—we shall also see that the restricted mea-
sures allow one to explore other aspects of nonlocality. Ad-
ditionally, there appear to be strong connections between the
deficit and distillation of randomness from shared states. For
example, it has just been shown inf20g that the one-way
deficit is equal to the mutual information minus the one-way
distillable randomnessf59g.

As before, the optimal protocols by which the correspond-
ing local informations are obtained amounts to producing
“classical-like” states of least entropy by the respective op-
erations. As mentioned in Sec. V B the theorems proved
there apply equally well in these restricted scenarios with
suitable modification.

In any protocol of concentrating information to local
form, the parties can stop at states of the form

%AB8 = o
i j

pij uilki u ^ u jlk j u. s77d

However, for the two-way scenario, we have argued that one
can stop already at pseudoclassically correlated states. When
one-way protocols are allowed, it is sufficient for the parties
to stop at states of the form

%AB8 = o
i

piuilki u ^ %i . s78d

Finally, for zero-way protocols, one has to achieve classi-
cal statess77d. Consider, for example, the zero-way protocol
for a state%AB by which I l

0” is attained. Without any classical
communicationsjust by dephasing via an environmentd, Al-
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ice and Bob change the state%AB into a classical-like state
%AB8 fof the form given in Eq.s77dg, so thatSs%A8d+Ss%B8d is
minimized, where%A8 and%B8 are the local density matrices of
%AB8 . Note that the parties must concentrate information using
classical communication. But this is only after they have
performed all their dephasings. The situation is therefore like
in a Bell-type experiment.

Let us now show thatD0” is an independently useful can-
didate for quantum correlations and can capture interesting
aspects of nonlocality. The states that contain no quantum
correlations would be then the ones withD0”=0. Consider, for
example, the states with eigenbasisswithout normalizationd

u0lAu0lB,u0lAu1lB,u1lAsu0l + u1ldB,u1lAsu0l − u1ldB, s79d

whereu0l and u1l are the eigenvectors of the Pauli matrixsz.
Such states are the ones used in the Bennett-Brassard 1984
sBB84d quantum cryptography protocolf4g. This set of or-
thogonal states is distinguishable locally. But it isnot distin-
guishable by zero-way communication. Bob must wait for
Alice’s measurement resultsin the sz basisd to decide
whether to perform a measurement in thesz basis or in the
sx basis. Therefore a mixture of the states in Eq.s79d, where
the mixing probabilities are all different from each othersso
that the spectrum of the resulting state is nondegenerated,
would have nonvanishingD0”. This is because an arbitrary
dephasing by Bob on such a mixture, before obtaining Al-
ice’s result, would result in no information being extracted
from the statesby Bobd. Consequently there would be an
information deficit when trying to extract information lo-
cally, because globally of course all the information is ex-
tractable from such a state. All the information is also ex-
tractable by one-way or two-way communication. This is in
contrast to states which have an eigenbasis

u0lAu0lB,u0lAu1lB,u1lAu0lB,u1lAu1lB,

for which all the information is extractable from the state
locally, by measurement by both the parties in thesz basis,
without any communication.

We therefore see that the quantum behavior of correla-
tions could result from the distinctly quantum but “local”
property of nonorthogonality. Here we call nonorthogonality
a local property, as it does nota priori require a tensor prod-
uct structure to manifest itself. It is this nonorthogonality that
manifests itself in a more complex form in the examples of
LOCC-indistinguishable orthogonal product bases
f10,60,61g. More generally, it may be the reason for any case
of LOCC indistinguishability of orthogonal statesf62–66g.

An interesting issue is the relation betweenD0” and mutual
information. In Sec. XI we have asked a question whether
there exist states for whichD would be more than half of the
mutual information. The same question can be asked in the
case of one-way and zero-way deficits. Pankowskif73g has
performed numerical simulations to evaluateD0” versus mu-
tual information. The results are presented in Fig. 5. Surpris-
ingly, there are states for which the deficit is almost equal to
the mutual information. Thus the measurement destroys al-
most all correlations. The quantum correlations do not imply
classical correlationssseef67g in this contextd.

With respect to the pure states considered in Sec. IV F, it
is easy to see thatD is also equal toD→. This is also true for
single copies of single-qubit states, due to theorem 2.

A. Expression for one-wayD

In this subsection we consider the expression for the one-
way deficit. In the case when only one-way communication
is allowed between the parties, the only thing that Alice and
Bob can do is that Alice dephases her part in some basis and
then sends her part to Bob. Dephasing transforms the state as

%AB → %AB8 = o
i

Pi ^ I%ABPi ^ I = o
i

piuilki u ^ %B
i ,

wherehPi = uilki uj forms a set of orthogonal one-dimensional
projectors on the Hilbert space of Alice’s part of%AB andpi
are probabilities of the corresponding outcomes which Alice
would obtain if she performed measurements with the same
Pi’s rather than dephasing, while%B

i is the state that Bob
would obtain conditionally on measurement outcomeuil.
Thus

pi = trs%ABPi ^ Id,

%B
i =

1

pi
trAsPi ^ I%ABPi ^ Id. s80d

The process of sending does not change the form of the
state, so that the entropy of the final state at Bob is

Ss%AB8 d = Ss%A8d + o
i

piSs%B
i d,

where%A8 =oipiuilki u is the reduced density matrix of theA
part of %AB8 . So finally I l

→ takes the form

FIG. 5. Zero-way deficit is plotted versus mutual information
for 100 000 random two-qubit states. The upper line stands forD0”

= IM. The lower line denotes isotropic states of Eq.s66d. Two re-
gimes are evident: in the first regime, there are states for which the
deficit is almost equal to mutual information. In the second region,
the deficit tends to half the mutual information.
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I l
→ = nAB − inf

hPij
SSs%A8d + o

i

piSs%B
i dD

and correspondingly

Dl
→ = inf

hPij
SSs%A8d + o

i

piSs%B
i dD − Ss%ABd. s81d

Just as we showed thatD was equal to the relative entropy
distance to pseudoclassically correlated states, one can also
write D→ andD0” as the minimum relative entropy distance to
the set of statesS→ andS0” which can be created reversibly
under the one-way and zero-way classes of operations.

XIII. RELATIONSHIP WITH OTHER MEASURES
OF THE QUANTUMNESS OF CORRELATIONS

Let us now compare the deficit with other measures of the
quantumness of correlations, in particular the quantum dis-
cord f11,12g. The latter is defined, formally, as the difference
of two classically equivalent expressions for the mutual in-
formation, applied to quantum systemsstaken to be a mea-
suring apparatus and systemd. It was defined with respect to
a measurementAM seither a projective one or a POVM per-
formed on the apparatusA. One then defines thediscord
dsAM uBd with respect to this measurement that results with
probabilitiespi in joint states%AB8i =sucilkciudA ^ %i

B. The dis-
cord is defined as

dsAMuBd = Hshpijd + o
i

piSs%id − Ss%ABd. s82d

The relationship betweendsAM uBd and D→ sdefined on
single copiesd was recently shown inf68g where it was
shown that the discord also has the interpretation of the ex-
traction of work by a demon, if one minimizesdsAM uBd
over all possible measurementsAM. Care, however, must be
taken, since with the definition of discord there is no cost
associated with pure states which are used in a POVM.
Therefore, we note here that the relationship between the
discord andD→ only applies if one optimizes the discord
over von Neumann measurements and disallows POVM’s.

Finally, let us provide two explicit examples of cases
where two-way communication is more powerful than one-
way communication. For example, one has the strict inequal-
ity D↔.D→=infAMPPVmeasdsAM uBd.

To this aim consider the basis related to the sausage states
of f10g which has been analyzed inf16g:

c1 = u0 + 1l
A

u2l
B

,

c2 = u0 − 1l u2l,

c3 = u0l u0 + 1l,

c4 = u0l u0 − 1l,

c5 = u1 + 2l u0l,

c6 = u1 − 2l u0l,

c7 = u1l u1l,

c8 = u2l u2l,

c9 = u2l u1l. s83d

Consider now any bipartite 3̂3 state%two-way that is diago-
nal in the above basis, but has a nondegenerate spectrum. It
is relatively easy to provide a two-way protocol that distin-
guishes vectorss83d without destroying themssee f16gd.
HenceD↔ vanishes. Evidently%two-way is not of the form
oi=1

3 ufilkfiu ^ %i with orthogonalfi, since there are no three
eigenvectors among Eq.s83d that have the same component
on Alice’s side. So bothD→ and discord are strictly positive
for this state. Thus Maxwell’s demon which communicates
in both directions is more powerful than a demon who can
only communicate in one direction.

Another simple example is to take states which have zero
optimized discord or one-way deficit,

r→ = o
i

piuilAki uA ^ rB
i , r← = o

j

pjrA
j

^ u jlBk j uB,

s84d

but in different directions of communication. Then take them
each to be on orthogonal Hilbert spaces and mix. Such a
state will haveD↔=0 since both parties can just project onto
the two orthogonal Hilbert spaces to determine whether they
hold r→ or r← and then the appropriate party can send her
state down the channel. On the other hand, one-way commu-
nication will be sufficient to completely localize one of the
states but not always both.

XIV. RELATION WITH MEASURES
OF CLASSICAL CORRELATION

In this section we shall analyze the relation of the classi-
cal deficit f16g to already known measures of classical cor-
relations. It happens that both zero-way and one-way deficits
have their “counterparts” in such measures. There is no
known analog, however, for the two-way deficit.

Let us recall that the quantum deficit was defined as

D = I − I l .

One can think of it as describing how much better Alice and
Bob can do under CO’s if they are given a quantum channel
instead of the classical channel. Because it feels the differ-
ence between the quantum and classical channels, it tells us
about the quantumness of correlations. Likewise, the classi-
cal deficit is given by

Dc = I l − ILO.

It tells us how much better two parties can do at localizing
information if, instead of having no access to a channel—i.e.,
closed local operations—they have access to a classical
channel. Because the added resource is a classical channel, it
shows how much better the parties can do by exploiting a
classical channel.

One can verify thatDc and D add up to the quantum
mutual informationIMs%ABd=Ss%Ad+Ss%Ad−Ss%ABd. Thus
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Dcl = IM − D.

More explicitly we havefcf. Eq. s11dg

Dcls%ABd = Ss%Ad + Ss%Bd − inf
CLOCC

fSs%A8d + Ss%B8dg; s85d

i.e., Dcl is the optimal decrease of local entropies by means
of CLOCC.

A. One-way measures

Corresponding to the measure of quantumness of correla-
tion under one-way classical communicationsfrom Alice to
Bobd sD→d, given by Eq.s81d, we could have the following
formula for classical correlation:

Dcl
→s%ABd = sup

Pi
FhSs%Ad − Ss%A8dj + HSs%Bd − o

i

piSs%B
i dJG

; sup
Pi

fdSsAd + dSsBuAdg. s86d

Note that the supremum is taken over all local dephasings on
Alice’s side. Although we optimize over projection measure-
ments, one can effectively include POVM’s by including all
the required ancillas from the start. Remarkably, it has been
shownf20g that POVM’s need not be considered when one
goes to to the limit of many copies.

In Eq. s86d, we have distinguished two terms. The second
term

dSsBuAd = Ss%Bd − o
i

piSs%B
i d

shows the decrease of Bob’s entropy after Alice’s measure-
ment. The first one

dSsAd = Ss%Ad − Ss%A8d

denotes the cost of this process on Alice’s side and is non-
positive. It is zero only if Alice measures in the eigenbasis of
her local density matrix%A.

The expression forDcl
→ is very similar to the measure of

classical correlation introduced by Henderson and Vedral
f13g:

CHV = sup
Pi
SSs%Bd − o

i

piSs%B
i dD . s87d

Originally the supremum was taken over by POVM’s, but as
mentioned we take the state acting already on a suitably
larger Hilbert space, unless stated otherwise explicitly.

The difference between the Henderson-Vedral classical
correlation measure and the one given in Eq.s86d is that the
former does not include Alice’s entropic costdSsAd of per-
forming dephasing. Hence, in general,

Dcl
→ ø DHV.

In the asymptotic limit of many copies, one has equality
f20g. Actually in f20g it was shown that the regularized one-
way classical deficit is equal to another operational measures
of classical correlations:distillable common randomnessin-
troduced inf59g. The latter is in turn equal to the regularized

Henderson-Vedral measure. It is interesting thatDcl
→ without

regularization, although it seems to be an important charac-
teristic of classical correlations, does not meet a basic re-
quirement for being a measure of classical correlations: it is
not monotonous under local operationsf42g. Thus regulariza-
tion plays here a role of monotonization. There is an inter-
esting question: what happens with the two-way classical
deficit after regularization?

B. Additivity of the one-way quantum and
classical deficits for Bell diagonal states

Here we will prove the fact mentioned in Sec. IX A: that
the one-way deficits are additive and that borrowing pure
qubits does not help for Bell diagonal states. First of all in
f69g it was shown that a measure of classical correlations
CHV is additive for Bell diagonal states. Let us recall
the argument, as it will be useful for making a connection
with the classical deficit. For a Bell diagonal stater, consider
a related channel L fi.e., such a channel that
sI ^ Ldsufl+kf+ud=%g. The maximum output Holevo function
over all input ensembles, denoted byx*sLd, is, for general
channels, no smaller thanCHV. They are equal if the density
matrix of ensemble attainingx* is equal to%A. In the case of
Bell diagonal states, we have%A= I /2, and it turns out that
the optimal ensemble for corresponding channels consists of
two orthogonal states and hence gives rise to the same ma-
trix. King f70g has shown thatx* is additive for channels
coming from the Bell diagonal states. From this and from the
fact that, in general,x* ùCHV one gets that for Bell diagonal
statesCHV for many copies is also equal tox* for many
copies of corresponding channels. This proves thatCHV must
be additive.

Now, let us make a connection with the classical deficit.
As discussed inf42g, if x* is attained on such an ensemble
that its density matrix is equal to%A, then by looking at the
ensemble maximizingx, one can tell something about mea-
surements that attainCHV. Namely, when the ensemble is
orthogonal, then one attainsCHV by measurements in the
eigenbasis of%A. Now, it is obvious from Eq.s86d and the
discussion thereafter that in the latter caseCHV is actually
equal to the classical deficit, as they differ from one another
only by entropy production during Alice’s measurement,
which vanishes, if it is done in the eigenbasis. SinceCHV is
additive, then for many copies it is again attained by mea-
surements in the orthogonal basis that is an eigenbasis of
Alice’s subsystem. Thus the classical deficit for many copies
is also not less thanCHV, and it by Eq.s86d cannot be greater.

Thus for Bell diagonal states the deficit is equal toCHV
and it is additive. Moreover, since the measurement was a
von Neumann one, the deficit is attained without using
POVM’s. This means that additional pure ancillas do not
help.

So far we have talked about the classical deficit. Now,
since the quantum and classical deficits add up to mutual
information which is additive, it follows that the quantum
deficit is additive too. Also, since borrowing local qubits
does not increase the classical deficit, it cannot decrease the
quantum deficit.
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C. Zero-way measures

Let us now consider measures of classical correlations
under no classical communication,Dcl

0” . Again, this is taken to
mean that the parties are not allowed to communicate before
making measurements, but can do so afterward in order to
concentrate on the classical records. The information deficit
under no classical communication,D0”, is given by

D0” = Ss%ABd − Ss%AB8 d,

where Ss%AB8 d is the von Neumann entropy of the optimal
final state%AB8 swhich is classical liked and was obtained by
local complete measurements, without classical communica-
tion. We then obtain

Dcl
0” = Ss%Ad + Ss%Bd − Ss%AB8 d = hSs%Ad − Ss%A8dj + hSs%Bd

− Ss%B8dj + hSs%A8d + Ss%B8d − Ss%AB8 dj

; dSsAd + dSsBd + IMsr8d.

We have three terms here: the last one

IMsr8d = Ss%A8d + Ss%B8d − Ss%AB8 d

is the classical mutual information of the final state, while
the first twodSsAd=Ss%Ad−Ss%A8d and dSsBd=Ss%Bd−Ss%B8d
denote, respectively, the local entropic costs of the process at
the respective sides. We therefore have a trade-off similar to
that in the one-way case. And again there was defined a
classical correlation measuref69g which consists only of the
last term of our quantity

C0” = sup
Pi

IMs%8d, s88d

where%8 is obtained out of% by local complete measure-
ments. Again the original definition ofC0” involved POVM’s,
but as we have suitably increased our Hilbert space from the
very beginning, we need not do so.

XV. COMPLEMENTARITY FEATURES OF INFORMATION
IN DISTRIBUTED QUANTUM SYSTEMS

Bohr was the first who recognized a fundamental feature
of quantum formalism: complementarity between incom-
patible observables. Complementarity was not explicitly re-
lated to entanglement, now regarded as an important
quantum-information resource. Namely, Bohr’s complemen-
tarity concerned mutually exclusive quantum phenomena as-
sociated with asingle system and observed under different
experimental arrangements.

Let us comment on complementarity in the case of com-
posite systems and Bohr complementarity. Roughly speak-
ing, the latter says that one cannot access the properties of
the systems necessary to describe it by one measurement.
The rule is formulated for single-quantum systems and is a
consequence of noncommutativity.

On the other hand, we know that one can also divide the
properties of the system into local and nonlocal ones, and
they are complementary with each other toof16g. For ex-
ample, one can perform measurement in Bell basis or in
standard product basis. However, one cannot perform those

measurements simultaneously. In other words, one cannot
access global and local properties of the systemssee also
f71g in this contextd.

The latter phenomenon is not merely a consequence of
Bohr’s complementarity. Indeed, if the only allowable states
of composite systems were the classically correlated states

r = o
i j

pij ueiluf jlkeiukf ju, s89d

then maximal information about the total system would be
available through measurements on subsystems. Global mea-
surements would not access any further knowledge about the
properties of the system. On the other hand, Bohr comple-
mentarity would still hold, in the sense that one cannot ac-
cess all properties of the system in one measurement.

Thus we see that the local-nonlocal complementarityf16g
is a consequence of two distinct phenomena:noncommuta-
tivity and the existence of entanglement (or quantum corre-
lations). So not only is there noncommutativity, but there is
too much of it, so that it affects also relations between local
and nonlocal informational contents.

In distributed systems one usually imposes constraints by
allowing operations that can be done solely by classical com-
munication and local operations. It turns out that in such a
situation there also arises an interesting complementarity.
Namely, inf16g we considered two tasks: localizing informa-
tion swhich we have presented in this paperd and sending
quantum informationse.g., teleportationd, performed simul-
taneously. It was shown that for a fixed protocolP, the rates
of those two tasks obey the relation

I lsP,rd + QsP,rd ø I lsrd, s90d

whereI lsP ,rd is the amount of information localized by the
protocolP and QsP ,rd is the amount of qubits transmitted
by the protocol.

For example, for the singlet state, the total informational
content is equal to the total correlation content and amount to
two bits. The right-hand side of the inequality is equal to 1.
This number 2 in light of the above complementarity we can
interpret as follows: 2 is equal not to 1 plus 1 but it is equal
to 1 or 1. One can either draw 1 bit of local information
sclassical correlationsd or teleport 1 qubitsquantum correla-
tionsd; however, we cannot access both bits.

One can see that this phenomenon is connected with the
above-mentioned Bohr complementarity for distributed sys-
tems: for the task of teleportation, Alice makes a Bell mea-
surement on her part of the singlet and unknown state to be
sent, while to localize information, she measures only the
half of the singlets. Interestingly, as far as those two exclu-
sive measurements are concerned, the “local versus nonlo-
cal” complementarity occurs within Alice’s laboratory, while
it results in complementarity between tasks that refer to
local-nonlocal properties of systems belonging to Alice and
Bob.

The above inequality suggests an interesting problem: to
find the trade-off curves for performances of teleportation
and localizing information of a given state. In particular, an
interesting question is whether there exist states for which if
we teleport the amount of qubits equal to distillable entangle-
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ment, one not only would not localize any information, but
would need to spend some additional pure statessseef17g in
this contextd.

XVI. DISCUSSION AND OPEN QUESTIONS

In conclusion we have developed a quantum-information
processing paradigm which involves local information as a
natural resource in the context class of CLOCC operations.
We have presented proof that the central quantity of the para-
digm, the quantum-information deficit, is bounded from
above by the relative entropy distance from the set of
pseudoclassically correlated states. We showed how the para-
digm allows one to define the thermodynamical cost of era-
sure of entanglement: entropy production necessary to make
the states separable by CLOCC operations. We proved that
the cost is no smaller than the relative entropy of entangle-
ment. Since the cost is no greater than the deficit, we have
obtained that the deficit is no smaller than the relative en-
tropy of entanglement. This in turn implies thatevery en-
tangled stateexhibits informational nonlocality.

We have also found that the paradigm offers a new
method of analysis of correlations of multipartite states. The
most nonlocal state from this point of viewswe call it infor-
mationally nonlocald would be the one for which one has to
produce the largest entropy while converting it into classical
states. It turned out that according to such a criterion, the
Aharonov state is much more nonlocal than the GHZ one.
The nonlocality that can be probed by our methods is one
that is not caught by Bell’s inequalities, since we have found
that also separable states can exhibit a nonzero deficit.
Rather, it has much in common with nonlocality without en-
tanglement, which was found for ensembles of statesf10g.
Thus our nonlocality is not identical to entanglement. As a
matter of fact, it is a broader notion.

The information deficit has then some peculiar properties.
Since it is not an entanglement measure, it can increase un-
der local operations. It is not unreasonable: Local operations
may destroy a local property and make it impossible to carry
out some action by separated parties, while when the parties
meet, the action may still be achievable. This curious behav-
ior of quantum states may be attributed to the fact that even
for separable states, when they are mixtures of nonorthogo-
nal states, we cannot ascribe to the subsystems local proper-
ties sthis may have some connection with the Kochen-
Specker theoremd.

The paradigm developed in this paper opens many impor-
tant questions. Here are some of them.

sid Are “noncommuting-choice protocols” better in local-
izing information?This is the major problem in the paradigm
of localizing information by CLOCC operations.

sii d Is the quantum deficit equal to the relative entropy
distance to pseudoclassically correlated states?This ques-
tion would be answered positively, if the noncommuting-
choice protocols do not help.

siii d Is the regularized deficit still nonzero for all en-
tangled states?For the regularized deficit we have a lower
bound given by the regularized relative entropy distance.
However, we do not know if for any entangled state the latter
is nonzero.

sivd Is the deficit for multiparty pure states equal to the
relative entropy of entanglement?For bipartite states it was
proved that the deficit is equal to entanglement. For the mul-
tiparty case it is also true for Schmidt decomposable states. It
is an open problem whether it is true in general. The same
question can be asked for the regularized deficit. Is it equal to
regularizedEr for multipartite pure states?

svd Is the two-way classical deficit a legitimate measure of
classical correlations?The classical deficit definitely is an
important quantity describing some aspects of classical cor-
relations. However, there is a question whether it can be used
to quantify them. To this end, it should not increase under
local operationsf13g. For the one-way case, the classical
deficit is not monotonous under local operations as shown in
f42g. Yet it turns out that after regularization, the monotonic-
ity is regainedf20g, because the regularized one-way classi-
cal deficit is equal to the one-way distillable common ran-
domness off59g. Can the two-way classical deficit be also
monotonous after regularization? This is connected to the
next question.

svid Is the classical two-way deficit equal to the two-way
distillable common randomness [59]?

svii d Is the relative entropy of entanglement the thermody-
namical cost of erasure of entanglement?We have shown
that the cost is bounded from below by the relative entropy
of entanglement. If there is equality, the relative entropy of
entanglement would acquire operational status: it would be
interpreted as the thermodynamical cost oferasure of en-
tanglement.

sviii d What is the relation between the deficit and mutual
information?We have shown that if a trade-off inequality for
Er Eq. s75d, would be violated, then the quantum deficit
would be more than the classical deficit for some states. We
have also touched on this question by analysis of the zero-
way deficit versus mutual information. Preliminary results
suggest that there is a very interesting phenomenon while
going from quantum to classical states via local measure-
ments: for some states before measurement there are large
correlations quantified by mutual information, while after
measurement, the remaining amount of information is equal
almost exclusively to the initial local information. This
means that for some states, even an optimal measurement
may destroy most of the information contained in correla-
tions. The question can be recast in the following way: how
small can the classical deficit be versus mutual information?

In f67g the measure of classical correlationss88d closely
related to the zero-way deficit was compared with mutual
information. The authors showed that when this measure is
smaller thane, then mutual information is smaller than
epolysdd whered is a dimension of the Hilbert space. They
were, however, unable to improve the factor to be of order of
log d. This means that most probably there is place for a
dramatic divergence between the two measures of correla-
tions. Since the deficit can be only smaller from the measure
of Eq. s88d, the effect can be even stronger. All that suggests
that there may be a large gap between the classical and quan-
tum.

sixd A fundamental open problem, or rather program, is to
analyze complementarity between drawing local information
and distilling singlets initiated inf16g. In the latter paper, the
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two tasks—drawing local information and teleporting
qubits—were treated as complementary ones. One obtains
trade-offs if one wants to perform those tasks simulta-
neously. An open question is whether distilling singlets can
lead to a negative amount of local information gained—i.e.,
whether in the process of distillation we have to use up local
pure qubits rather than we gain themf17g. Moreover, one can
define the following quantity: the maximal amount of pure
qubits one can draw by CLOCC from a given statef19g.
Note that here we do not speak about local qubits. Thus, for
example, the singlet is already pure and needs no action. Due
to reversibility in entanglement transformations for pure bi-
partite statesf37g, the question is in fact reduced to the prob-
lem of drawing simultaneously singlets and local pure qubits.

sxd An interesting question arises in the context off72g.
There the authors probe correlations by applying random lo-
cal unitaries to transform the state to product or separable
form, using the smallest number of unitaries. This method
allows one to define not only quantum correlations but also
total correlations in terms of entropy production while reach-
ing some set of states. It differs from our approach in that the
authors do not use classical communication in an essential
way sit cannot helpd. Therefore a natural application of their
method is to probe total correlations. This allows them to
give a fresh, operational meaning to the quantum mutual
information—it is the entropy production needed to bring a
quantum state into product form. Our method could be ap-
plied in a similar way—one tries to bring a state into product
form using CLOCC but without the classical communication
si.e., CLOd. Then one finds that the entropy productionsi.e.,
deficit to product statesDprod

CLOd is equal toIsrABd. This can be
seen simply from the fact that the optimal protocol is for one
party to locally compress her state and then to dephase in the
eigenbasis of the compressed state. She then dephases in a
basis complementary to the eigenbasis. The latter measure-
ment completely destroys all correlations betweenA andB.
Since the initial entropy wasSsrABd and the final entropy is
SsAd+SsBd, the deficit and, hence, entropy production are
IsrABd. Just as the relative entropy distance to some set of
states spseudoclassically correlated and separable statesd
played a crucial role in the case ofD and Dsep, here the
relative entropy distance to product states plays the crucial
role and is equal to the quantum mutual information.

It is rather amusing that this gives the same answer as the
method used inf72g, since in our cases, Alice performs her
measurement without any knowledge of the density matrix
of Bob, while inf72g, she must use this information. Further-
more, the number of unitaries which would be needed to
perform the dephasing in our case isSsAd2, far greater than

the optimal number found inf72g. Understanding in greater
detail why these two methods give the same answer might be
an interested avenue of further research. It is also interesting
to compare how one divides the total correlations into quan-
tum and classical ones. For example, in the case of the sin-
glet, the authors off72g interpret the two bits of mutual in-
formation as requiring one bit of noise to destroy the
entanglement and one bit of noise required to destroy the
secret correlations. Inf16g we interpreted the two bits in
terms of one use of a quantum channelor one bit of local
information.

In the case of destroying correlations due to entangle-
ment, our method uses classical communication in an essen-
tial way; therefore, on the surface, it appears to naturally
encode the notion of entanglement whose definition relies on
the class of LOCC. For pure states the authors off72g also
obtain entanglement, as in this case communication is not
needed to reach the set of separable states. It is interesting
then to compare what both approaches would produce as far
as the entropic cost of erasing entanglement is concerned.
One could expect that our method will show less cost in the
case of erasing entanglement.

Finally we strongly believe that the present, paradigm
analyzed and developed here will be helpful as a rigorous
tool in searching for a border or rather a way of coexistence
between quantumness and classicality in physical states. It
may also enrich our understanding of quantum-information
processing and its relation to other branches of physics like
thermodynamics and statistics.
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