466 research outputs found

    Quantum cellular automata and free quantum field theory

    Full text link
    In a series of recent papers it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors. In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.Comment: 10 pages, 2 figures, revtex style. arXiv admin note: substantial text overlap with arXiv:1601.0483

    Physics Without Physics: The Power of Information-theoretical Principles

    Get PDF
    David Finkelstein was very fond of the new information-theoretic paradigm of physics advocated by John Archibald Wheeler and Richard Feynman. Only recently, however, the paradigm has concretely shown its full power, with the derivation of quantum theory (Chiribella et al., Phys. Rev. A 84:012311, 2011; D'Ariano et al., 2017) and of free quantum field theory (D'Ariano and Perinotti, Phys. Rev. A 90:062106, 2014; Bisio et al., Phys. Rev. A 88:032301, 2013; Bisio et al., Ann. Phys. 354:244, 2015; Bisio et al., Ann. Phys. 368:177, 2016) from informational principles. The paradigm has opened for the first time the possibility of avoiding physical primitives in the axioms of the physical theory, allowing a refoundation of the whole physics over logically solid grounds. In addition to such methodological value, the new information-theoretic derivation of quantum field theory is particularly interesting for establishing a theoretical framework for quantum gravity, with the idea of obtaining gravity itself as emergent from the quantum information processing, as also suggested by the role played by information in the holographic principle (Susskind, J. Math. Phys. 36:6377, 1995; Bousso, Rev. Mod. Phys. 74:825, 2002). In this paper I review how free quantum field theory is derived without using mechanical primitives, including space-time, special relativity, Hamiltonians, and quantization rules. The theory is simply provided by the simplest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the three following simple principles: homogeneity, locality, and isotropy. The inherent discrete nature of the informational derivation leads to an extension of quantum field theory in terms of a quantum cellular automata and quantum walks. A simple heuristic argument sets the scale to the Planck one, and the observed regime is that of small wavevectors ...Comment: 34 pages, 8 figures. Paper for in memoriam of David Finkelstei

    Path-sum solution of the Weyl Quantum Walk in 3+1 dimensions

    Full text link
    We consider the Weyl quantum walk in 3+1 dimensions, that is a discrete-time walk describing a particle with two internal degrees of freedom moving on a Cayley graph of the group Z3\mathbb Z^3, that in an appropriate regime evolves according to Weyl's equation. The Weyl quantum walk was recently derived as the unique unitary evolution on a Cayley graph of Z3\mathbb Z^3 that is homogeneous and isotropic. The general solution of the quantum walk evolution is provided here in the position representation, by the analytical expression of the propagator, i.e. transition amplitude from a node of the graph to another node in a finite number of steps. The quantum nature of the walk manifests itself in the interference of the paths on the graph joining the given nodes. The solution is based on the binary encoding of the admissible paths on the graph and on the semigroup structure of the walk transition matrices.Comment: 13 page

    Causal graph dynamics

    Full text link
    We extend the theory of Cellular Automata to arbitrary, time-varying graphs. In other words we formalize, and prove theorems about, the intuitive idea of a labelled graph which evolves in time - but under the natural constraint that information can only ever be transmitted at a bounded speed, with respect to the distance given by the graph. The notion of translation-invariance is also generalized. The definition we provide for these "causal graph dynamics" is simple and axiomatic. The theorems we provide also show that it is robust. For instance, causal graph dynamics are stable under composition and under restriction to radius one. In the finite case some fundamental facts of Cellular Automata theory carry through: causal graph dynamics admit a characterization as continuous functions, and they are stable under inversion. The provided examples suggest a wide range of applications of this mathematical object, from complex systems science to theoretical physics. KEYWORDS: Dynamical networks, Boolean networks, Generative networks automata, Cayley cellular automata, Graph Automata, Graph rewriting automata, Parallel graph transformations, Amalgamated graph transformations, Time-varying graphs, Regge calculus, Local, No-signalling.Comment: 25 pages, 9 figures, LaTeX, v2: Minor presentation improvements, v3: Typos corrected, figure adde

    Causal Dynamics of Discrete Surfaces

    Full text link
    We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.Comment: In Proceedings DCM 2013, arXiv:1403.768
    • …
    corecore