74 research outputs found

    Interference Management Algorithms for Multicell MIMO Systems

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 이광복.Intercell interference is one of the most challenging issues limiting the performance of cellular systems, especially when the spectrum is highly reused across cells.In multiple-input multiple-output (MIMO) systems, in particular, it has been reported that, in a multicell environment, the performance of spatial multiplexing is significantly degraded due to intercell interference. In this dissertation, we develop interference management algorithms for multicell MIMO systems. In the first part of this dissertation, an efficient user selection scheme for the downlink of multiuser MIMO systems is proposed in a multicell environment. In a multicell environment, the intercell interference is one of the most influential factors limiting the performance. Thus, a user selection scheme that considers intercell interference is essential to increase the sum rate. The proposed scheme is based on an interference aware precoding. It sequentially selects users such that the sum rate is maximized. In particular, we develop a simple incremental metric for the sum rate. The use of the derived metric enables a significant reduction in the computational complexity of the user selection process, as compared to the optimal exhaustive search. Numerical results show that the proposed scheme provides near-optimal performance with substantially reduced complexity. In the second part of this dissertation, we propose a one-shot (non-iterative) cooperative beamforming scheme for downlink multicell systems. Unlike previous noniterative beamforming schemes, the proposed cooperative beamforming strives to balance maximizing the desired signal power while minimizing the generated interference power to neighbors by maximizing the network-wide average sum rate. Based on the average sum rate analysis, we derive what we term a global selfishness that steers the egoistic-altruistic balance of the network to maximize average sum rate. The global selfishness enables an autonomous decision on the cooperative beamforming vector in each cell. The main advantage of our approach is that cooperative beamforming solutions are analytically derived not only for an ideal two-cell network scenario but also for a practical three-sectored cellular network scenario. The simulation results verify that the proposed one-shot cooperative beamforming outperforms other conventional non-iterative schemes especially in interference-limited regions, which implies that it is very effective for performance improvement of edge users. In the third part of this dissertation, we propose a distributed cell clustering algorithm for coordinated-multi-point (CoMP) system based on message passing algorithm. In 5G networks system, it is expected that a large number of base stations (BSs) serve simultaneously and BSs are deployed in a very high density. Because of this high density systems, the centralized coordination approaches typically lead to high computational burden for practical implementations. Moreover, the sum rate metric are all coupled and it is difficult to determine clusters of BSs. This motivates us to propose a distributed cell clustering scheme based on message passing algorithm. The simulation results verify that the proposed clustering algorithm outperform the conventional distributed algorithm and reduces computational burden compared to centralized clustering algorithms.Chapter 1 Introduction 1 1.1 Low Complexity User Selection Algorithm 1 1.2 Non-iterative Beamforming Scheme 2 1.3 Distributed Cell Clustering Algorithm Based on Message Passing 5 Chapter 2 Low Complexity User Selection Algorithm 7 2.1 System Model 7 2.2 Proposed User Selection Algorithm 10 2.2.1 User Selection Criterion 11 2.2.2 User Selection Algorithm 15 2.3 Numerical Results 18 Chapter 3 Non-iterative Beamforming Scheme 26 3.1 System Model 26 3.2 Proposed One-Shot Cooperative Beamforming 27 3.3 Determination of Global Selfishness 31 3.3.1 Ideal Two-cell Network Scenario 31 3.3.2 Practical Three-Sectored Cellular Network Scenario 36 3.3.3 Practical Cellular Network Scenario with Nt antennas 40 3.4 Numerical Results 43 Chapter 4 Distributed Cell Clustering Algorithm Based on Message Passing 53 4.1 System Model 53 4.2 Message Passing Algorithm 54 4.3 Numerical Results 57 Chapter 5 Conclusion 62 Bibliography 67 Abstract (In Korean) 73Docto

    Distributed optimisation techniques for wireless networks

    Get PDF
    Alongside the ever increasing traffic demand, the fifth generation (5G) cellular network architecture is being proposed to provide better quality of service, increased data rate, decreased latency, and increased capacity. Without any doubt, the 5G cellular network will comprise of ultra-dense networks and multiple input multiple output technologies. This will make the current centralised solutions impractical due to increased complexity. Moreover, the amount of coordination information that needs to be transported over the backhaul links will be increased. Distributed or decentralised solutions are promising to provide better alternatives. This thesis proposes new distributed algorithms for wireless networks which aim to reduce the amount of system overheads in the backhaul links and the system complexity. The analysis of conflicts amongst transmitters, and resource allocation are conducted via the use of game theory, convex optimisation, and auction theory. Firstly, game-theoretic model is used to analyse a mixed quality of service (QoS) strategic non-cooperative game (SNG), for a two-user multiple-input single-output (MISO) interference channel. The players are considered to have different objectives. Following this, the mixed QoS SNG is extended to a multicell multiuser network in terms of signal-to-interference-and-noise ratio (SINR) requirement. In the multicell multiuser setting, each transmitter is assumed to be serving real time users (RTUs) and non-real time users (NRTUs), simultaneously. A novel mixed QoS SNG algorithm is proposed, with its operating point identified as the Nash equilibrium-mixed QoS (NE-mixed QoS). Nash, Kalai-Smorodinsky, and Egalitarian bargain solutions are then proposed to improve the performance of the NE-mixed QoS. The performance of the bargain solutions are observed to be comparable to the centralised solutions. Secondly, user offloading and user association problems are addressed for small cells using auction theory. The main base station wishes to offload some of its users to privately owned small cell access points. A novel bid-wait-auction (BWA) algorithm, which allows single-item bidding at each auction round, is designed to decompose the combinatorial mathematical nature of the problem. An analysis on the existence and uniqueness of the dominant strategy equilibrium is conducted. The BWA is then used to form the forward BWA (FBWA) and the backward BWA (BBWA). It is observed that the BBWA allows more users to be admitted as compared to the FBWA. Finally, simultaneous multiple-round ascending auction (SMRA), altered SMRA (ASMRA), sequential combinatorial auction with item bidding (SCAIB), and repetitive combinatorial auction with item bidding (RCAIB) algorithms are proposed to perform user offloading and user association for small cells. These algorithms are able to allow bundle bidding. It is then proven that, truthful bidding is individually rational and leads to Walrasian equilibrium. The performance of the proposed auction based algorithms is evaluated. It is observed that the proposed algorithms match the performance of the centralised solutions when the guest users have low target rates. The SCAIB algorithm is shown to be the most preferred as it provides high admission rate and competitive revenue to the bidders

    Game Theory and Microeconomic Theory for Beamforming Design in Multiple-Input Single-Output Interference Channels

    Get PDF
    In interference-limited wireless networks, interference management techniques are important in order to improve the performance of the systems. Given that spectrum and energy are scarce resources in these networks, techniques that exploit the resources efficiently are desired. We consider a set of base stations operating concurrently in the same spectral band. Each base station is equipped with multiple antennas and transmits data to a single-antenna mobile user. This setting corresponds to the multiple-input single-output (MISO) interference channel (IFC). The receivers are assumed to treat interference signals as noise. Moreover, each transmitter is assumed to know the channels between itself and all receivers perfectly. We study the conflict between the transmitter-receiver pairs (links) using models from game theory and microeconomic theory. These models provide solutions to resource allocation problems which in our case correspond to the joint beamforming design at the transmitters. Our interest lies in solutions that are Pareto optimal. Pareto optimality ensures that it is not further possible to improve the performance of any link without reducing the performance of another link. Strategic games in game theory determine the noncooperative choice of strategies of the players. The outcome of a strategic game is a Nash equilibrium. While the Nash equilibrium in the MISO IFC is generally not efficient, we characterize the necessary null-shaping constraints on the strategy space of each transmitter such that the Nash equilibrium outcome is Pareto optimal. An arbitrator is involved in this setting which dictates the constraints at each transmitter. In contrast to strategic games, coalitional games provide cooperative solutions between the players. We study cooperation between the links via coalitional games without transferable utility. Cooperative beamforming schemes considered are either zero forcing transmission or Wiener filter precoding. We characterize the necessary and sufficient conditions under which the core of the coalitional game with zero forcing transmission is not empty. The core solution concept specifies the strategies with which all players have the incentive to cooperate jointly in a grand coalition. While the core only considers the formation of the grand coalition, coalition formation games study coalition dynamics. We utilize a coalition formation algorithm, called merge-and-split, to determine stable link grouping. Numerical results show that while in the low signal-to-noise ratio (SNR) regime noncooperation between the links is efficient, at high SNR all links benefit in forming a grand coalition. Coalition formation shows its significance in the mid SNR regime where subset link cooperation provides joint performance gains. We use the models of exchange and competitive market from microeconomic theory to determine Pareto optimal equilibria in the two-user MISO IFC. In the exchange model, the links are represented as consumers that can trade goods within themselves. The goods in our setting correspond to the parameters of the beamforming vectors necessary to achieve all Pareto optimal points in the utility region. We utilize the conflict representation of the consumers in the Edgeworth box, a graphical tool that depicts the allocation of the goods for the two consumers, to provide closed-form solution to all Pareto optimal outcomes. The exchange equilibria are a subset of the points on the Pareto boundary at which both consumers achieve larger utility then at the Nash equilibrium. We propose a decentralized bargaining process between the consumers which starts at the Nash equilibrium and ends at an outcome arbitrarily close to an exchange equilibrium. The design of the bargaining process relies on a systematic study of the allocations in the Edgeworth box. In comparison to the exchange model, a competitive market additionally defines prices for the goods. The equilibrium in this economy is called Walrasian and corresponds to the prices that equate the demand to the supply of goods. We calculate the unique Walrasian equilibrium and propose a coordination process that is realized by the arbitrator which distributes the Walrasian prices to the consumers. The consumers then calculate in a decentralized manner their optimal demand corresponding to beamforming vectors that achieve the Walrasian equilibrium. This outcome is Pareto optimal and lies in the set of exchange equilibria. In this thesis, based on the game theoretic and microeconomic models, efficient beamforming strategies are proposed that jointly improve the performance of the systems. The gained results are applicable in interference-limited wireless networks requiring either coordination from the arbitrator or direct cooperation between the transmitters

    A Stochastic-Geometry Approach to Coverage in Cellular Networks with Multi-Cell Cooperation

    Full text link
    Multi-cell cooperation is a promising approach for mitigating inter-cell interference in dense cellular networks. Quantifying the performance of multi-cell cooperation is challenging as it integrates physical-layer techniques and network topologies. For tractability, existing work typically relies on the over-simplified Wyner-type models. In this paper, we propose a new stochastic-geometry model for a cellular network with multi-cell cooperation, which accounts for practical factors including the irregular locations of base stations (BSs) and the resultant path-losses. In particular, the proposed network-topology model has three key features: i) the cells are modeled using a Poisson random tessellation generated by Poisson distributed BSs, ii) multi-antenna BSs are clustered using a hexagonal lattice and BSs in the same cluster mitigate mutual interference by spatial interference avoidance, iii) BSs near cluster edges access a different sub-channel from that by other BSs, shielding cluster-edge mobiles from strong interference. Using this model and assuming sparse scattering, we analyze the shapes of the outage probabilities of mobiles served by cluster-interior BSs as the average number KK of BSs per cluster increases. The outage probability of a mobile near a cluster center is shown to be proportional to ec(2ν)2Ke^{-c(2-\sqrt{\nu})^2K} where ν\nu is the fraction of BSs lying in the interior of clusters and cc is a constant. Moreover, the outage probability of a typical mobile is proved to scale proportionally with ec(1ν)2Ke^{-c' (1-\sqrt{\nu})^2K} where cc' is a constant.Comment: 5 page
    corecore