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When things get complicated enough, you’re forced to change your level of description.

Douglas R. Hofstadter, Metamagical Themas.
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Abstract

In interference-limited wireless networks, interference management techniques are im-

portant in order to improve the performance of the systems. Given that spectrum and

energy are scarce resources in these networks, techniques that exploit the resources ef-

ficiently are desired. We consider a set of base stations operating concurrently in the

same spectral band. Each base station is equipped with multiple antennas and trans-

mits data to a single-antenna mobile user. This setting corresponds to the multiple-input

single-output (MISO) interference channel (IFC). The receivers are assumed to treat in-

terference signals as noise. Moreover, each transmitter is assumed to know the channels

between itself and all receivers perfectly. We study the conflict between the transmitter-

receiver pairs (links) using models from game theory and microeconomic theory. These

models provide solutions to resource allocation problems which in our case correspond

to the joint beamforming design at the transmitters. Our interest lies in solutions that

are Pareto optimal. Pareto optimality ensures that it is not further possible to improve

the performance of any link without reducing the performance of another link.

Strategic games in game theory determine the noncooperative choice of strategies of

the players. The outcome of a strategic game is a Nash equilibrium. While the Nash

equilibrium in the MISO IFC is generally not efficient, we characterize the necessary

null-shaping constraints on the strategy space of each transmitter such that the Nash

equilibrium outcome is Pareto optimal. An arbitrator is involved in this setting which

dictates the constraints at each transmitter. In contrast to strategic games, coalitional

games provide cooperative solutions between the players. We study cooperation between

the links via coalitional games without transferable utility. Cooperative beamforming

schemes considered are either zero forcing transmission or Wiener filter precoding. We

characterize the necessary and sufficient conditions under which the core of the coali-

tional game with zero forcing transmission is not empty. The core solution concept

specifies the strategies with which all players have the incentive to cooperate jointly in

a grand coalition. While the core only considers the formation of the grand coalition,

coalition formation games study coalition dynamics. We utilize a coalition formation

algorithm, called merge-and-split, to determine stable link grouping. Numerical results
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show that while in the low signal-to-noise ratio (SNR) regime noncooperation between

the links is efficient, at high SNR all links benefit in forming a grand coalition. Coalition

formation shows its significance in the mid SNR regime where subset link cooperation

provides joint performance gains.

We use the models of exchange and competitive market from microeconomic theory to

determine Pareto optimal equilibria in the two-user MISO IFC. In the exchange model,

the links are represented as consumers that can trade goods within themselves. The

goods in our setting correspond to the parameters of the beamforming vectors neces-

sary to achieve all Pareto optimal points in the utility region. We utilize the conflict

representation of the consumers in the Edgeworth box, a graphical tool that depicts

the allocation of the goods for the two consumers, to provide closed-form solution to

all Pareto optimal outcomes. The exchange equilibria are a subset of the points on the

Pareto boundary at which both consumers achieve larger utility then at the Nash equi-

librium. We propose a decentralized bargaining process between the consumers which

starts at the Nash equilibrium and ends at an outcome arbitrarily close to an exchange

equilibrium. The design of the bargaining process relies on a systematic study of the

allocations in the Edgeworth box. In comparison to the exchange model, a competitive

market additionally defines prices for the goods. The equilibrium in this economy is

called Walrasian and corresponds to the prices that equate the demand to the supply

of goods. We calculate the unique Walrasian equilibrium and propose a coordination

process that is realized by the arbitrator which distributes the Walrasian prices to the

consumers. The consumers then calculate in a decentralized manner their optimal de-

mand corresponding to beamforming vectors that achieve the Walrasian equilibrium.

This outcome is Pareto optimal and lies in the set of exchange equilibria.

In this thesis, based on the game theoretic and microeconomic models, efficient beam-

forming strategies are proposed that jointly improve the performance of the systems.

The gained results are applicable in interference-limited wireless networks requiring ei-

ther coordination from the arbitrator or direct cooperation between the transmitters.
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Chapter 1.

Introduction

1.1. Motivation

Wireless broadband networks1 provide mobile users with high data rate services. In

these networks, base stations are associated with coverage areas called cells. Mobile

users located in these cells are granted access to high-speed data services from the

corresponding base stations. The wireless connections between the base stations and

the users enable user mobility.

Due to spectrum scarcity, universal frequency reuse is a prerequisite in wireless broad-

band networks [BPG+09]. The transmissions from all base stations are at the same

frequencies and at the same time. Nevertheless, in order to support the increasing

number of users, small cells (femto cells) are to be deployed [DMC+12, LMF+11] to

increase the network coverage and reduce the load on existing base stations (macro

cells). The base stations are to be equipped with multiple antennas in order to in-

crease the cell spectral efficiency through multiplexing and spacial diversity techniques

[KFV06, ACH07, LLL+10].

Having universal frequency reuse as well as dense deployment of base stations, in-

terference becomes the main source of performance degradation in the network. The

interference at a mobile user can be distinguished between intra-cell interference and

inter-cell interference. Intra-cell interference at a user originates from the transmis-

sion of the associated base station to other users in the same cell. Intra-cell interfer-

ence is usually managed through orthogonal multiple access methods [ACH07]. These

methods divide the available resources (frequency, time, code, space) into orthogonal

resource blocks. A set of resource blocks is then allocated to a single user for trans-

mission. Inter-cell interference, on the other hand, is caused by transmissions in other

1Such as IEEE 802.16 systems and Third Generation Partnership Project (3GPP) Long Term Evolution

(LTE).
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(arbitrator)

transmitter

receiver

coordinator

Figure 1.1.: The transmitters are connected to the arbitrator which coordinates their

choice of beamforming vectors.

cells. Inter-cell interference is to be mitigated by interference management techniques

[KFV06, ACH07, BPG+09, LLL+10].

Interference management techniques aim at coordinating the transmissions between

the cells. The processing complexity for this purpose is desired to be at the base sta-

tions. In general, the base stations are larger in size and are capable to carry out larger

computational overhead than the mobile users. Accordingly, the number of antennas

at the base stations will be much larger than at the mobile users [ACH07]. Moreover,

complex processing such as beamforming is to be performed at the base stations. Beam-

forming is a technique for transmitting (or receiving) the desired signal from multiple

antennas to maximize the signal power in desired spacial directions. If the base station

knows the channels between itself and all receivers, then beamforming can reduce or

even null the interference at unintended receivers while maintaining acceptable signal

power at the intended receiver [ACH07, GHH+10].

We distinguish between two models for interference management between the cells:

1. The first model requires a central controller which coordinates the transmissions of

the base stations. This setting is illustrated in Figure 1.1. We refer to the central

controller as the arbitrator. The arbitrator can acquire any necessary information

from all transmitters.

2. The second model relies on direct communication between the base stations. This

setting is illustrated in Figure 1.2. The base stations in this setting can exchange

necessary information for cooperative transmissions.

2



1.2. Interference Channels

transmitter

receiver

Figure 1.2.: The transmitters are directly connected to each other for signaling regarding

the joint choice of beamforming vector.

Both mentioned models rely on the existence of backhaul connections which already

exist in wireless broadband network standards [Raz11]. In the context of coordination or

cooperation between the base stations, the base stations are to be regarded as intelligent

systems [KFV06, AKG11]. With this respect, game theoretic models are appropriate to

describe the interaction between the base stations.

1.2. Interference Channels

The interference channel (IFC) [CT91] is a mathematical model which describes a set-

ting in which multiple transmitter-receiver pairs operate in the same spectral band.

In Figure 1.3, a two-user IFC is illustrated. Transmitter 1 sends useful information

to receiver 1, and transmitter 2 sends useful information to receiver 2. Each receiver

receives a superposition of the signals sent from both transmitters. At receiver 1 (anal-

ogously receiver 2) the signal from transmitter 2 interferes on the intended signal from

transmitter 1.

The standard form in Figure 1.3 is a representation of the IFC after specific normal-

ization [Car78]. The direct channel coefficients are unity. The interference channel gain

from transmitter 1 to receiver 2 is a. The channel gain from transmitter 2 to receiver

1 is b. Transmitter 1 and transmitter 2 have a total transmission power of P1 and P2,

respectively. The signals at receiver 1 and 2 are

y1 = s1 + bs2 + n1, y2 = as1 + s2 + n2, (1.1)

3
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1

1

a

b

transmitter 1

transmitter 2

receiver 1

receiver 2

s1

s2

y1

y2

Figure 1.3.: Two-user interference channel.

respectively, where si is the message transmitted from transmitter i ∈ {1, 2}. The noise

terms are ni ∼ CN (0, 1), i ∈ {1, 2}. If both receivers treat interference signals as noise,

then achievable rates at receiver 1 and 2 with single user decoding (SUD) are

R1 = log2

(
1 +

P1

1 + bP2

)
, R2 = log2

(
1 +

P2

1 + aP1

)
, (1.2)

respectively.

The capacity region of an interference channel is composed of all jointly achievable

data rates. Finding the capacity region of the IFC in general is still an open problem.

In [Cos85], an overview of the results on the capacity region of the interference channel

is provided. In [Car78], it is shown that if interference is very high (a ≥ 1 + P2 and

b ≥ 1 + P1), then it can be decoded and subtracted from the intended signal. In this

case, the capacity region has a rectangular shape. In [HK81] and [Sat81], it is shown

that in the strong interference regime (a ≥ 1 and b ≥ 1), an achievable rate region is

the intersection of two multiple access channel capacity regions. The largest known rate

region for the interference channel is according to the Han-Kobayashi scheme [HK81].

Recently, it has been proven that the Han-Kobayashi scheme is within one bit from the

capacity region of the IFC [ETW08].

In this thesis, we consider the multiple-input single-output (MISO) IFC [VJ04]. All

transmitters are equipped with multiple antennas while all receivers use single antennas.

1.3. Transmit Beamforming

In this section, we briefly discuss how transmit beamforming techniques can be applied

for interference management in interference networks. In Figure 1.4, a transmitter and

two receivers are illustrated. The transmitter uses N antennas. The channel vectors

from the transmitter to receiver 1 and 2 are h1 ∈ C
N and h2 ∈ C

N , respectively. At

each transmit antenna i the transmitted symbol s is multiplied by the complex weight

wi ∈ C. The beamforming vector used at the transmitter is w = [w1, . . . , wN ]T . A total

4
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h2

×w1

s ×w2

×

transmitter receiver 1
y1+

n1

wN

receiver 2
y2+

n2

h1

Figure 1.4.: An illustration of a transmitter with N antennas and two receivers with

single antennas.

power constraint P at the transmitter is a constraint on the sum of powers used at the

antennas:

N∑

k=1

|wk|2 = ‖w‖2 ≤ P. (1.3)

Beamforming is a signal processing technique which enables the possibility to increase

the radiation power in desired directions while reducing the radiation power in unde-

sired directions [BO01, GSS+10]. Transmit beamforming exploits the knowledge of the

downlink channels. In order to acquire channel knowledge at the transmitter several

techniques are discussed in [BO01]. In time-division duplex (TDD) systems, reciprocity

between the uplink and downlink channels can be used to estimate the channel at the

transmitter using training data from the receivers. Another method of obtaining channel

knowledge at the transmitter is by estimating the channel at the receiver and forwarding

the channel information to the transmitter via a feedback link.

In Figure 1.4, assume receiver 1 is the intended receiver of the transmitter and receiver

2 is the unintended receiver. The transmitter can maximize the power gain at receiver

1 by matching the beamforming vector w to the channel h1. The beamforming design

for this purpose is called maximum ratio transmission (MRT). Moreover, it is possible

to null the received signal power at receiver 2 when the beamforming vector w is chosen

orthogonal to the channel vector h2. The beamforming design which maximizes the

power at receiver 1 and nulls the interference power at receiver 2 corresponds to zero

forcing (ZF) transmission.

We illustrate the effect of transmit beamforming by an example. Assume the trans-

mitter uses a linear antenna array [Hay96] and the single-antenna receivers are located

in the far field of the array. Moreover, the intended receiver is located at 0 degrees while

the unintended receiver is at an angle of 30 degrees from the normal of the array. The

channels are assumed to be quasi-static block flat fading. In Figure 1.5, MRT array
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Figure 1.5.: Array pattern for a two-element linear array. The solid and dashed lines cor-

respond to the maximum ratio transmission and cooperative beamforming,

respectively.

pattern, plotted in solid line, achieves highest power gain at the intended receiver and

also high interference gain at the unintended receiver. The array pattern for a choice

of beamforming vector desired to mitigate interference at receiver 2 is plotted with the

dashed line. It can be observed that the power gain at the intended receiver is less than

the gain achieved with MRT. However, the interference gain is reduced significantly.

1.4. Conflict Analysis and Resource Allocation

Economic theory is concerned with efficient allocation of limited resources to economic

agents. The economic agents represent individuals that have the desire to possess the

valuable resources. The scarcity of the resources brings up a conflict between the indi-

viduals on how to distribute the resources among them.

Microeconomic theory [JR03, MCWG95] is a field in economics which studies eco-

nomic agent behavior in markets. The economic agents represent both consumers and

producers of goods. While generally the goods in a market can be said to flow directly

between the consumers, prices are usually considered as means of trade for the goods.

Producers sell their goods at the markets which make them accessible to the consumers

at specified prices as is illustrated in Figure 1.6. Consumers on the other hand, are

endowed with monetary budget which enables them to buy the goods. The consumers

naturally have preferences over the available goods. Each consumer determines his de-

mand of the goods according to his budget and preferences. The prices of the goods are

adapted depending on the overall amount of goods demanded by the consumers as well

as their supply by the producers. This interaction between the producers and consumers

6
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Figure 1.6.: Illustration of an economic model with J producers of n goods. The goods

are sold at markets which determine their prices. The K consumers buy

goods from the markets.

at markets can be studied using tools from microeconomic theory.

The behavior of economic agents plays a major role in determining the state of an

economic system [Mye08]. Each economic agent is a decision-maker which seeks choices

between different alternatives with the attempt to increase his wealth. His preference

over the available goods is usually represented by a utility function. The behavior of

the economic agent must conform with the maximization of his utility function. That

is, after observing the market prices, quantities of goods are bought by the consumers

in such a way that their utilities are maximized. Important in this behavior is that an

economic agent is not aware of the structure of the market and the factors that lead to

the prices of the goods. In other word, each economic agent takes prices as given and

is incapable of altering them. Different market structures as well as their equilibria are

discussed in Section 1.4.1.

Game theory is created by von Neumann and Morgenstern in The Theory of Games

and Economic Behavior [vNM44] to provide tools for studying economic behavior. The

reason for creating game theory is due to the fact that the mathematical methods used

in economic analysis have not been adequate to analyze complex economic dynamics

[Leo95]. With this respect, game theory is concerned with modeling conflict situations

and providing solutions that range between competitive and cooperative individuals.

The individuals in game theory are considered to be more intelligent than in microe-

conomic theory [Mye99]. Each individual maximizes his utility function having the

7
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Partial Equilibrium Theory General Equilibrium Theory

Microeconomic Theory

Figure 1.7.: Distinction in equilibrium concepts in microeconomic theory.

awareness of the entire market structure. As in microeconomic theory, the solutions of

conflict situations in game theory rely on notions of stability. We discuss game theoretic

models in Section 1.4.2.

Resource allocation problems arise in multiuser wireless scenarios [HL08]. There, mul-

tiple users can share the wireless channel for communication. Multiple-access schemes

are concerned with efficient allocation of the channel resources to the users. The re-

sources may be time-slots in time-division multiple access (TDMA), frequency bands

in frequency-division multiple access (FDMA), code in code-division multiple access

(CDMA) or space in space-division multiple access (SDMA). These resources can be

regarded as valuable goods which the base station (producer) has to allocate to the

users (consumers).

1.4.1. Microeconomic Theory

Two main building blocks of microeconomic theory is consumer theory and the theory

of the firm [JR03]. Consumer theory deals with the decisions made by a consumer to

maximize his preference. The theory of the firm studies production plans of a firm

aimed at maximizing its profit. The solution concepts in microeconomic theory are dis-

tinguished between partial equilibrium theory and general equilibrium theory [JR03].

This distinction is illustrated in Figure 1.7. In partial equilibrium theory, the changes

in one market are assumed not to affect the prices in other markets. In general equi-

librium theory, the prices in different markets are connected. That is, a change in the

price of one good leads to a change in the prices of other goods. The study in microeco-

nomic theory is also classified according to market structures. Market structures can be

distinguished between the least competitive (pure monopoly) to the most competitive

(perfect competitive markets).

8
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Partial Equilibrium Theory

We discuss the partial equilibrium in three market structures corresponding to pure

monopoly, Cournot oligopoly and Bertrand oligopoly. The equilibrium in Cournot

oligopoly and Bertrand ologopoly is related to the Nash equilibrium in game theory

which is discussed in Section 1.4.2.

In a pure monopoly, there exists a single firm which produces quantities of the same

good. There exists a set of consumers which buy quantities of this good. In this setting,

the monopolist does not need to consider any actions or competition from other firms.

The monopolist maximizes his profit by determining the amount of the good to be

produced as well as the good’s price. An oligopoly is a more competitive market model

in comparison to pure monopoly. In a Cournot oligopoly, there exists a set of firms

which sell quantities of the same good on a common market. The market determines

the price of the good depending on its total supply. The profit of a firm is the gain

from selling its goods minus the cost for producing these goods. In a Cournot oligopoly,

each firm has to determine independently the amount of the good to produce. The

Cournot equilibrium, proposed by Cournot in 1838, corresponds to a Nash equilibrium

of a strategic game between the firms. The formulation of a strategic game as well as its

solution are presented in Section 1.4.2. In contrast to a Cournot oligopoly, in a Bertrand

oligopoly each firm can determine the price of its produced good independently. The

consumers buy the goods only from the firm that provides the lowest prices. Therefore,

the firm which sets the lowest price is the only firm that sells its good. The equilibrium

in this setting corresponds to the prices set by the firms such that each firm’s profit is

zero.

General Equilibrium Theory

In perfect competitive markets, there exists a set of K consumers K = {1, . . . , K} and

a number n of divisible goods. The total amount of good i ∈ {1, ..., n} is ci and has

a unit price of pi. Define the vector of prices for the goods as p = [p1, . . . , pn]. Each

consumer is initially endowed with a budget bk which he uses to buy goods. The budget

set of consumer k is defined as

Bk = {x ∈ R
n
+ : pT x ≤ bk}. (1.4)

In the Arrow-Debreu market model, it is assumed that each consumer is initially en-

dowed with amount of goods instead of a fixed monetary budget. Define the endowment

vector of consumer k as ek =
(
ek

1 , . . . , ek
n

)
. The budget of consumer k is the revenue

9
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gained from selling his bundle of goods ek at the given prices. Hence, in the Arrow-

Debreu market model, the budget of consumer k is bk = pT ek.

Each consumer chooses the amount of goods to buy without taking into account the

decisions of the other consumers. This leads to a distributed decision-making of the

consumers. Each consumer k has a utility function uk : [0, c1]×· · · × [0, cn] → R+ which

reveals his preference over the goods. A consumer k demands quantities of goods to

maximize his utility function. Thus, the demand function dk = [dk
1 , . . . , dk

n] of consumer

k, depending on the prices of the goods, is defined as:

dk(p) = arg max
x∈Bk

uk(x). (1.5)

The general equilibrium in competitive markets is due to Walras [Wal74] and describes

the state at which the prices of the goods are chosen such that the demand of each good

equals its supply, i.e.

K∑

k=1

dk
i (p∗) = ci, for all i ∈ {1, . . . , n}. (1.6)

The existence of a Walrasian equilibrium2 is guaranteed if the following conditions are

satisfied [JR03, Theorem 5.5]:

• the consumer utility function uk(x) is continuous, strongly increasing3, and strictly

quasiconcave4 on R
n
+,

• the endowment of each good is strictly positive, i.e.,
∑K

k=1 ek
i > 0 for all i ∈

{1, . . . , n}.

In a competitive market, the properties of the aggregate excess demand of the goods

plays an important role in the analysis of the Walrasian equilibrium. The aggregate

excess demand of good i is defined as [JR03, Definition 5.4]:

zi(p) =
K∑

k=1

dk
i (p) − ci, (1.7)

where dk
i (p) is consumer k’s demand of good i in (1.5). Let z(p) = [z1(p), . . . , zn(p)].

Walras’ law is formulated as [JR03, Section 5.2]:

pT z(p) = 0. (1.8)

2We will use the term Walrasian equilibrium to refer to the distribution of the goods according to the

Walrasian prices and also to the corresponding utilities of the consumers.
3A function f : D → R with D ⊂ R

n is strongly increasing if f(x′) > f(x) whenever x′ ≥ x (the

inequality is componentwise) and x′ 6= x [JR03, Definition A1.17].
4A function f : D → R with D ⊂ R

n is strictly quasiconcave if and only if, for all x′ 6= x in D,

f(tx′ + (1 − t)x) > min {f(x′), f(x)} for all t ∈ (0, 1) [JR03, Definition A1.25].

10
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Walras’ law implies that if the excess demand is larger than zero in one market, then

the excess demand in another market must be negative.

The existence of a unique Walrasian equilibrium depends on the properties of the

aggregate excess demand function. The aggregate excess demand z(p) in (1.7) has the

gross substitute property if when the price of one good i is increased from pi to p′
i, and the

prices of the other goods stay the same, then zj([p1, . . . , pi−1, p′
i, pi+1, . . . , pn]) > zj(p) for

j 6= i [MCWG95, Definition 17.F.2]. If the aggregate excess demand satisfies the gross

substitute property, then there exists at most one Walrasian equilibrium [MCWG95,

Proposition 17.F.3]. In order to reach the Walrasian equilibrium, a price adjustment

process (tâtonnement process) is required. Specifically, if the demand of one good is

larger than its supply, the price of this good is increased. On the other hand, if a

good is supplied in quantities larger than its demand then its price is reduced. If

the aggregate excess demand has the gross substitute property, then the tâtonnement

process is globally convergent [ABH59]. In Section 4.2, we use the competitive market

model to characterize the Walrasian equilibrium in the two-user MISO IFC.

Pareto demonstrated that the Walrasian equilibrium in competitive markets is effi-

cient according to his optimality criterion [SZ95]. In [Par94], Pareto formulated the

optimality criterion which indicates that an efficient allocation of the resource to the

individuals is achieved when a redistribution of the resources reduces the wealth of at

least one individual. The interesting property of the Walrasian equilibrium in compet-

itive markets is that given the behavior of the consumers as willing to maximize their

profits independently leads to a Pareto optimal allocation of the resources. Pareto found

his optimality condition motivated by the multiple optimal points found by Edgeworth

[Edg81] in a setting of exchange between individuals.

In his book Mathematical Psychics [Edg81] in 1881, Edgeworth studied a voluntary

exchange model between economic agents. Each agent is initially endowed with an

amount of goods. The agents bargain on the distribution of the goods. Edgeworth

showed in a two individual setting that starting at an initial distribution of two goods,

there is a set of equilibria at which the two consumers are simultaneously satisfied. He

called the set of points at which the bargaining ends the contract curve. The allocations

on the contract curve satisfy the Pareto optimality criterion5. In Section 4.1, we model

the situation in the two-user MISO IFC as an exchange economy and characterize all

points on the contract curve. Moreover, we construct a bargaining process between the

5The equilibria in the exchange economy of Edgeworth were later discovered by Shubik [Shu59] to

coincide with the core of a coalitional game between the individuals. Coalitional games are discussed

in Section 1.4.2.
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Figure 1.8.: Distinctions in game theory.

MISO links in order to reach a point on the contract curve.

1.4.2. Game Theory

Game theory studies the decisions that individuals, referred to as players, would make in

conflict situations. Each player’s decision depends on the decisions of the other players.

Accordingly, game theory analyzes the decisions the players would make when they

interact. Game theory is built on the assumption that the players are rational and

intelligent decision-makers [LR57, Mye84]:

• Rationality: The behavior of a player follows the maximization of his utility func-

tion.

• Intelligence: The players are capable to comprehend the conflict situation they

are in and know that the other players are also intelligent.

These attributes of the players are understood under the term “rational players” [LR57].

In game theory, the distinction is made under noncooperative and cooperative games.

In cooperative games, the players cooperate by choosing their actions jointly to achieve

a jointly acceptable solution. Noncooperative games, on the other hand, assume that

each player independently chooses his actions taking the actions of the other players as

fixed. The foundations of noncooperative games are due to John Nash [Mye99]. While

the players can be regarded as either noncooperative or cooperative, the distinction in

game theory is made according to the form of the game [OR94]. There exists three

game forms: The strategic form, the extensive form, and the coalitional form. Strategic

and extensive form games are noncooperative games while coalitional form games are

cooperative games. This distinction is illustrated in Figure 1.8. In this thesis, we do not

use extensive form games. The interested reader is referred to [OR94, Section 6] for the

theory. Next, we will describe noncooperative games in strategic form and cooperative

games in coalitional form.

12
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The Strategic Form

A game in strategic form 〈K, (Ak)k∈K, (uk)k∈K〉 [OR94, Section 2.1] is composed of three

elements. The set K = {1, . . . , K} consists of the players. Each player k has a strategy

space Ak from which he can select his actions. Each element of Ak is a pure strategy and

resembles a deterministic choice of action of player k. Alternatively, a mixed strategy of

a player k is the choice of a pure strategy in Ak with a certain probability. That is, each

player k can randomize between different pure strategies in his strategy set Ak. In this

thesis, we do not consider the possibility of mixed strategies for the players. The utility

function of a player k is uk : A1 × · · · × AK → R+. The utility function describes the

preferences of a player depending on the strategies of all players. A player k in a game

in strategic form can only choose strategies from his own strategy set Ak to maximize

his utility function.

The solution of a game in strategic form is a Nash equilibrium [Nas50b]. The Nash

equilibrium describes the noncooperative outcome between the players as each player

maximizes his utility given the actions of others. A pure strategy Nash equilibrium

[OR94, Definition 14.1] of a strategic game is a strategy profile (aNE
1 , ..., aNE

K ) ∈ A1 ×
· · · × AK such that for every player k ∈ K

uk(aNE
1 , . . . , aNE

K ) ≥ uk(aNE
1 , . . . , aNE

k−1, ak, aNE
k+1, . . . , aNE

K ), for all ak ∈ Ak. (1.9)

A Nash equilibrium is composed of a set of strategies for each player with the property

that if one player changes his strategy unilaterally he would reduce his payoff. In

Figure 1.9, the Nash equilibrium is illustrated. The illustration shows how the utility

point would change if a player changes his strategy alone while the other player chooses

the Nash equilibrium strategy. In Section 3.1, we study strategic games in the MISO

IFC.

A Nash equilibrium may not always exist in pure strategies. However, the existence

of a Nash equilibrium is guaranteed when the players use mixed strategies [Nas50b].

Conditions for existence and uniqueness of a pure strategy Nash equilibrium are provided

in [Ros65].

The best response of a player k to the strategies of the other players is a strategy or set

of strategies from Ak that maximize player k’s utility function. The Nash equilibrium

is a stable state at which each player chooses his best response to the strategies of the

other players. Thus, the Nash equilibrium can be reached by a series of best responses.

In strategic games, best response dynamics are studied [BO98] in order to examine

whether the Nash equilibrium can be reached. Global stability of a Nash equilibrium

means that a Nash equilibrium is reached by a series of best responses starting from

13
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Figure 1.9.: Illustration of a Nash equilibrium.

any strategy profile.

Bayesian games [Mye83] are strategic games in which the players have uncertainty

about the other players. A player’s incomplete information can be about the utility

functions or the strategy spaces of the other players. In these games, each player has

private information which the other players do not know. The private information at

player k is described by his type tk. All types of a player k are included in the set

Tk. Given his type tk, player k builds beliefs on what the other players’ types are.

The subjective probability πk(t1, . . . , tk−1, tk+1, . . . , tK |tk) describes player k’s beliefs

about the other players’ types given his type is tk. In Bayesian games, a player chooses

the strategy which maximizes his expected utility function over all possible types of

the other players. The equilibrium of a game with incomplete information is called a

Bayesian equilibrium.

The Coalitional Form

Games in coalitional form describe possible cooperation between players. Unlike in

noncooperative games, cooperative games consider joint decisions of the players. A

game in coalitional form without transferable utilities 〈K, X , V, (uk)k∈K〉 [OR94, Section

13.5] is described by four elements: The set of players is K and is called the grand

coalition. The set X is the set of consequences which consists of all jointly possible

actions of the players. The mapping V assigns to every coalition S ⊆ K a subset of the

set X . The utility function of a player k is uk : X → R+.

The above definition of a coalitional game is general and can represent any game

with transferable utilities. In a coalitional game with transferable utilities, the sum of

the payoff of the players in a coalition S (the worth of a coalition S) is represented

14
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by the characteristic function ν(S) ∈ R [LR57, Chapter 8]. In coalitional games with

transferable utilities, the worth of a coalition can be divided arbitrarily between its

members.

Solution concepts of coalitional games characterize a stable element or set of stable

elements in the set of consequences X . The first criterion for an element of the set X to

be stable is for it to be an imputation. An imputation is an element x ∈ X satisfying

uk(x) ≥ uk(V ({k})) for all k ∈ K [OR94, Section 14.2]. In words, an imputation is a

strategy profile with which each player k gets a higher utility than being noncooperative.

If a strategy profile x ∈ X is not an imputation, then there exists a player that would

not agree to x since he can achieve a higher utility when acting on his own. Let I ⊆ X
be the set of all imputations. An objection of coalition S to the imputation y is an

imputation x such that uk(x) > uk(y) for all k ∈ S.

The core of a coalitional game is the set of imputations to which there exists no

objection by any coalition S. We use the core solution concept in the MISO IFC in

Section 3.2.1. Another solution concept of coalitional games is the stable set proposed

by von Neumann and Morgenstern [vNM44]. The stable set F of a coalitional game

is a subset of all imputations in I which satisfies the internal and external stability

conditions [OR94, Definition 279.1]:

• Internal stability: If x ∈ F then for no z ∈ F does there exist a coalition S for

which uk(z) > uk(x) for k ∈ S.

• External stability: If z ∈ F\I then there exists an element y ∈ F such that

uk(y) > uk(z) for k ∈ S and for some coalition S.

While the core solution is a unique set, the stable set might not be unique. That is,

there might be several stable sets of a coalitional game. There are other solutions to

coalitional games such as the bargaining set, kernel, nucleolus, and the Shapley value.

The interested reader is referred to [OR94, Chapter 14] and also to [LJ11] for a brief

introduction.

The above described solutions of coalitional games determine joint strategies of the

players such that players would cooperate in a grand coalition and no coalition has

the incentive to deviate and act on its own. Coalition formation games [AD74, Mar07]

describe situations in which the players can dynamically group to form a coalition struc-

ture. A coalition structure is a partition of the grand coalition K into a set of disjoint

coalitions. In coalition formation games, a partition function assigns to each coalition

structure the worth of each coalition. The stability of a coalition structure ensures that

no set of players can deviate to form another coalition structure. Different coalition
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formation models are mentioned in the survey papers [Gre94, Yi03]. In [vNM44], von

Neumann and Morgenstern proposed a coalition formation model, where each player

proposes a set of players to build a coalition with. If a set of players have simultane-

ously proposed each other, then the coalition forms. In [DG80], an individually stable

coalition formation model is proposed. In this model, only a single player is allowed to

join a coalition in the existing coalition structure. An individually stable contractual

equilibrium is formulated which requires that a player could only change coalitions when

this is beneficial for him, to all the members of the coalition which he joins, and all the

members of the coalition which he leaves. It is shown that this equilibrium always exists

and it is possible to design a dynamic process that yields in a finite number of steps an

equilibrium. In Section 3.2.2, we use a coalition formation algorithm which is based on

merging and splitting of coalitions to reach a stable coalition structure. This coalition

formation mechanism has been proposed in [AW09].

Cooperative games can be also solved by bargaining problems6. A bargaining problem

between K players is defined by 〈U , d〉, where U ⊂ R
K is the utility set and d ∈ U is

called the threat point or disagreement point. If the players could not reach an agreement,

then their utilities correspond to the threat point. The solution of a bargaining problem

is a unique point in U . In [Nas50a], Nash formulated a cooperative solution to a two-

player bargaining problem with a convex utility set U . The Nash bargaining solution

(NBS) uNBS is based on four axioms [Pet92]7:

• Weak Pareto Optimality (WPO): There exists no x ∈ U such that x > uNBS (the

inequality is componentwise). This means that the players cannot jointly improve

their outcome from the NBS.

• Symmetry (SYM): If d1 = · · · = dK and the utility space U is symmetric, i.e. for

any point x ∈ U the permutation of the coordinates of x leads to a point x′ ∈ U ,

then uNBS
1 = · · · = uNBS

K .

• Scale Transformation Covariance (STC): The bargaining problem 〈aU +b, ad+b〉
with a, b ∈ R

K and a > 0 has the NBS auNBS +b where uNBS is the NBS of 〈U , d〉.

• Independence of Irrelevant Alternatives (IIA): Given two bargaining problems

〈U , d〉 and 〈Ũ , d̃〉 with d = d̃ and U ⊂ Ũ and the NBS of 〈Ũ , d̃〉 is ũNBS ∈ U then

the NBS of 〈U , d〉 is also ũNBS.

6Bargaining problems can be represented by games in coalitional form [OR94, Chapter 15].
7We describe the axioms using the NBS.
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The NBS satisfies the above axioms and solves the following problem [Pet92, Definition

2.1]:

maximize
∏

k=1,...,K

(uk − dk)

subject to (u1, . . . , uK) ∈ U .

(1.10)

The NBS is the point in the utility set which dominates the threat point and maximizes

the volume of the box created with the points d and uNBS. Other bargaining solutions

from axiomatic bargaining theory, such as the Kalai-Smorodinsky (KS) solution [KS75]

and the egalitarian bargaining solution are described in [Pet92].
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Chapter 2.

System Model and Problem Formulation

2.1. System and Channel Model

Consider a set K := {1, ..., K} of transmitter-receiver pairs (links) operating concur-

rently in the same spectral band. Each transmitter k is equipped with Nk ≥ 2 antennas,

and each receiver with a single antenna. This setting is illustrated in Figure 2.1 and

corresponds to the K-user multiple-input single-output (MISO) interference channel

(IFC).

The quasi-static block flat-fading channel vector from transmitter k to receiver ℓ is

denoted by hkℓ ∈ C
Nk×1. Each transmitter k uses a transmit beamforming vector wk

from its feasible strategy space Ak defined as

wk ∈ Ak := {w ∈ C
Nk×1 : ‖w‖2 ≤ 1}, (2.1)

where we assumed a total power constraint of one (w.l.o.g.). The basic model for the

matched-filtered, symbol-sampled complex baseband data received at receiver k is1

yk = hH
kkwksk +

∑

ℓ 6=k

hH
ℓkwℓsℓ + nk, (2.2)

where sk ∼ CN (0, 1) is the symbol transmitted by transmitter k and nk ∼ CN (0, σ2)

are the noise terms. Throughout, we define the signal-to-noise ratio (SNR) as 1/σ2.

A strategy profile is a joint choice of strategies of all transmitters defined as

(w1, ..., wK) ∈ X := A1 × · · · × AK . (2.3)

Given a strategy profile, the signal-to-interference-and-noise ratio (SINR) of link k is

γk(w1, ..., wK) =
|hH

kkwk|2
σ2 +

∑
ℓ 6=k |hH

ℓkwℓ|2
, (2.4)

1For ease of notation, we conjugate the true channels h̃kℓ such that hkℓ = h̃
∗

kℓ.
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Figure 2.1.: Illustration of a K-user MISO IFC. The transmitters use multiple antennas

while each receiver uses a single antenna. The solid arrows represent the

links’ intended channel vectors. The dashed arrows represent the interfer-

ence channel vectors.

which results in the achievable rate

Rk(w1, ..., wK) = log2(1 + γk(w1, ..., wK)), (2.5)

when single-user decoding (SUD) is assumed at receiver k, i.e., the receiver treats inter-

ference as noise. The achievable rate region is defined as

R :=
{

(R1(w1, ..., wK), . . . , RK(w1, ..., wK)) ∈ R
K
+ : (w1, ..., wK) ∈ X

}
, (2.6)

which is the set composed of all jointly achievable rates. In the rate region R, rate tuples

can be ranked according to their Pareto efficiency. A rate tuple (R′
1, . . . , R′

K) ∈ R
is Pareto superior to (R1, . . . , RK) ∈ R if (R′

1, . . . , R′
K) ≥ (R1, . . . , RK), where the

inequality is componentwise and strict for at least one component. The transition from

(R1, . . . , RK) to (R′
1, . . . , R′

K) is called a Pareto improvement [JR03, Chapter 4.3.2].

Situations where Pareto improvements are not possible are called Pareto optimal. These

points constitute the Pareto boundary of the rate region. Formally, the set of Pareto

optimal points of R are defined as [Pet92, p. 18]

P(R) := {x ∈ R : there is no y ∈ R with y ≥ x, y 6= x}, (2.7)

where the inequality in (2.7) is componentwise. The Pareto boundary is a subset of the

weak Pareto boundary defined as [Pet92, p. 14]

W(R) := {x ∈ R : there is no y ∈ R with y > x}, (2.8)

where the inequality in (2.8) is componentwise.
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Figure 2.2.: Illustration of a two-user rate region.

In Figure 2.2, a two-user rate region is illustrated. The weak Pareto boundary is

the set of outermost points in the rate region. The Pareto boundary is a subset of the

weak Pareto boundary which has the additional property that it is impossible to strictly

improve the rate of a link from the current operating point without affecting the rates of

the other links. Accordingly, Pareto optimality is stronger than weak Pareto optimality.

A single user point of a link k is its maximum achievable rate when all other links switch

their transmission off. The links’ coexistence brings the conflict that the links cannot

achieve the rates in their single user points simultaneously. This is mainly due to the

interference coupling between the links which degrades their performance. In the MISO

IFC rate region, efficient operating points must be Pareto optimal. Otherwise, it is

possible to improve the rate of at least one link without affecting the rates of the other

links. Next, we will provide the necessary beamforming vectors required to operate at

any Pareto optimal point.

By observing that the achievable rate of a link k in (2.5) is monotonically increasing

with the direct power gain |hH
kkwk|2 for fixed interference powers |hH

ℓkwℓ|2, k 6= ℓ. In

addition, the rate of link k is monotonically decreasing with the interference power gain

for fixed intended power gain. Pareto optimal beamforming requires a tradeoff between

maximizing the intended power gain and minimizing interference gains generated at

unintended receivers.

In the two-user MISO IFC, the set of efficient beamforming vectors for each transmit-

ter k ∈ {1, 2} are parameterized by a single real-valued parameter as [JLD08, Corollary

1]

wk(λk) =
√

λk
Πhkℓ

hkk

‖Πhkℓ
hkk‖ +

√
1 − λk

Π⊥
hkℓ

hkk

‖Π⊥
hkℓ

hkk‖
, k 6= ℓ, (2.9)
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Figure 2.3.: Illustration of a power gain region.

where λk ∈ [0, λMRT
k ] with λMRT

k = ‖Πhkℓ
hkk‖2/‖hkk‖2. The set of beamforming vector

in (2.9) includes maximum ratio transmission (MRT) for λk = λMRT
k such that

wk(λMRT
k ) = wMRT

k =
hkk

‖hkk‖ , (2.10)

and also zero forcing transmission (ZF) for λk = 0 such that

wk(λk = 0) = wZF
k =

Π⊥
hkℓ

hkk

‖Π⊥
hkℓ

hkk‖
, k 6= ℓ. (2.11)

In (2.9), the set of beamforming vectors necessary for Pareto optimal operation are

characterized for each transmitter independently. This set includes the two special

beamforming vectors, MRT and ZF, where MRT beamforming maximizes the intended

power gain, while ZF nulls the interference at the unintended receiver.

In [Jor10], the concept of power gain region associated with a transmitter is developed

in order to characterize efficient beamforming in the K-link case. The power gain

region of a transmitter k is the set of all achievable power gains from this transmitter

to all receivers. In Figure 2.3, a two-dimensional power gain-region is illustrated for

transmitter 1. The direction vectors e1, e2, and e3 refer to three different parts of the

boundary of the power gain region. The boundary part corresponding to e2 includes

the maximum achievable power gain at receiver 1 and also zero power gain at receiver 2.

These extreme points correspond to MRT and ZF transmission strategies, respectively.

Using the power gain region concept, the beamforming vectors necessary to achieve
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any Pareto optimal point in the rate region R are parameterized as [MJ11, Theorem 2]:

wk(ξk1, . . . , ξkK) = pkvmax




ξkkhkkhH
kk −

∑

ℓ 6=k

ξkℓhkℓh
H
kℓ

︸ ︷︷ ︸
Zk




, (2.12)

where ξkℓ are real nonnegative weights satisfying
∑K

ℓ=1 ξkℓ = 1, and the power allocation

is determined by the following conditions:

pk =





1 µmax(Zk) > 0

[0, 1] µmax(Zk) = 0

0 µmax(Zk) < 0

. (2.13)

The number of required real-valued parameters to determine the efficient beamforming

vectors for each transmitter k in (2.12) is K − 1. For a transmitter k, power control in

(2.13) is needed when the downlink channels hkℓ, ℓ ∈ K, from transmitter k are linearly

dependent. In this case, the largest eigenvalue of Zk for specific choice of parameters can

be less than zero. If the downlink channels from transmitter k are linearly independent,

then µmax(Zk) is always strictly larger than zero except for ξkk = 0.

2.2. Problem Formulation and Contributions

In this section, we formulate the problems studied in this thesis and state our contribu-

tions accordingly. Moreover, we provide the references to the papers and articles (listed

at the end of this section) where the results have been already published.

Our results are motivated by the fact that the Nash equilibrium in the MISO IFC,

investigated in Section 3.1.1, is generally inefficient [LDJ08, LJ08]. With this respect,

our problem formulations are concerned with the improvement of the performance of

the links from the Nash equilibrium through coordination or cooperation mechanisms.

In Chapter 3, noncooperative and cooperative models from game theory for beam-

forming design in MISO IFC are used. The problem statements of this chapter are

formulated in Problem 1 and Problem 2.

Problem 1. What are the necessary constraints on the strategy space of each transmitter

to achieve a Pareto optimal Nash equilibrium?

Problem 1 is studied in Section 3.1.2. We consider a strategic game between the

links in which the strategy space of each transmitter is constrained by null-shaping
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constraints. Null-shaping constraints at a transmitter prohibit its transmission in spe-

cific spacial dimensions. We characterize the necessary null-shaping constraints for each

transmitter such that the Nash equilibrium of the resulting strategic game is Pareto

optimal. Here it is assumed that the arbitrator sets the constraints at each transmitter.

This result has been published in [MJ11b].

Problem 2. How would the links cooperate to jointly improve their rates with simple

non-iterative transmission schemes such as zero forcing transmission or Wiener filter

precoding?

Problem 2 is studied in Section 3.2. We use coalitional games in the MISO IFC to

determine possible cooperation between the links. The conditions for nonempty core of

the coalitional game with ZF beamforming are characterized. These conditions state

when the links can jointly improve their rates by joint cooperation with ZF transmission.

In Section 3.2.2, a coalition formation game is formulated in which distinct sets of links

can cooperate with ZF beamforming or Wiener filter precoding. We utilize an algorithm

called merge-and-split in Section 3.2.3 to determine stable coalition structures according

to which joint performance improvement from the Nash equilibrium is achieved. These

results have been published in [MJ11a].

The next problems deal with the two-user MISO IFC and are studied using models

from microeconomic theory in Chapter 4.

Problem 3. What are the necessary and sufficient beamforming vectors that achieve

all Pareto optimal points in the two-user MISO IFC SINR region?

Problem 3 is studied in Section 4.1. We use a model of exchange in the two-user

MISO IFC. The links are regarded as consumers that possess goods corresponding to

the parameters of the efficient beamforming vectors in (2.9). The consumers in this

setting can trade the goods between themselves. We exploit the Edgeworth box to illus-

trate the distribution of the goods between the consumers. In the Edgeworth box, the

contract curve corresponds to the distributions of the goods that lead to Pareto optimal

points. We characterize the contract curve in closed-form in Section 4.1.1. Moreover,

we determine the exchange equilibria in Section 4.1.2 which are Pareto optimal points

that dominate the Nash equilibrium. These results have been published in [MJ11c] and

the journal version in [MJ12a].

Problem 4. How to design a cooperative bargaining process that requires low signaling

overhead between two links and terminates at an exchange equilibrium?
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Problem 4 is studied in Section 4.1.3. The exchange equilibria characterized in Sec-

tion 4.1.2 are candidates for the outcomes of a bargaining process between the two

consumers (links). The bargaining process is iterative and structured in bargaining-

steps. At each bargaining-step, communication between the transmitters is needed in

the form of signaling. Our design of the bargaining process relies on a systematic study

of the allocations in the Edgeworth box. Accordingly, we propose a bargaining process

which requires two-bit signaling from each transmitter at each bargaining-step and is

guaranteed to converge to an outcome arbitrarily close to an exchange equilibrium. This

result has been published in [MJHG10].

Problem 5. How to coordinate the beamforming vectors of the two links to achieve an

exchange equilibrium?

Problem 5 is considered in Section 4.2. The competitive market model in Section

4.2 extends the exchange model in Section 4.1 by defining prices for the goods. The

equilibrium of a competitive market is the Walrasian equilibrium and corresponds to the

prices that equate the demand to the supply of goods. We characterize the Walrasian

equilibrium prices in Section 4.2.2 and prove its uniqueness. In addition, we propose

a coordination process, realized by the arbitrator, to reach the Walrasian equilibrium

in Section 4.2.3. The Walrasian equilibrium lies in the set of exchange equilibria, i.e.,

dominates the Nash equilibrium. These results have been published in [MJ11c] and the

journal version in [MJ12a].
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2.3. Related Work

In this section, we first describe works that characterize Pareto optimal operating points

in MISO IFC as well as works that design distributed coordination mechanisms to im-

prove the performance of the links. Afterwards, we mention works that apply tools from

game theory and microeconomic theory for resource allocation problems in communica-

tion networks.

2.3.1. Beamforming in Interference Channels

The problem of jointly optimizing the transmit beamforming vectors at the transmitters

to meet a global objective of system efficiency in the MISO IFC has been the study of

several recent works. Achieving a Pareto optimal point in the rate region requires finding

the corresponding joint beamforming vectors to be used at the transmitters. The set

of feasible beamforming vectors for each transmitter is an N -dimensional complex ball

where N is the number of used antennas. In [LDL11], it is found that the complexity

of the problem for finding desirable Pareto optimal operating points in the MISO IFC

such as the maximum weighted sum-rate and proportional-fair rate points is NP-hard.

Therefore, characterizing the necessary beamforming vectors that lead to Pareto optimal

points is valuable to reduce the complexity of finding efficient operating points. Works

with this objective are discussed next.

Characterization of Pareto Optimal Points

The importance of characterizing the set of beamforming vectors necessary for the links’

Pareto optimal operation is twofold: First, the set of relevant beamforming vectors to

consider for finding a Pareto optimal point is reduced to a relatively small subset of

all feasible beamforming vectors. Second, this set is parameterized by a number of

scalars which reduces the complexity for indicating the required beamforming vectors.

The work in [JLD08] was an initiation for characterizing the set of necessary transmis-

sion strategies to achieve all Pareto optimal points in the MISO IFC with interference

treated as noise at the receivers. The efficient beamforming vectors are parameterized

by K(K −1) complex-valued parameters, where K is the number of links. The proposed

parametrization reveals that only a small subset of all feasible beamforming vectors are
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necessary for Pareto optimal beamforming. For the special two-user case, the efficient

beamforming vectors are proven to be a linear combination of MRT and ZF. Thus,

two real-valued parameters are required each between zero and one to characterize all

Pareto optimal operating points. Based on this characterization, a monotonic opti-

mization framework is developed in [JL10] for the two-user case to find the maximum

weighted sum-rate, proportional-fair rate, and max-min solution that lie on the Pareto

boundary of the rate region.

In [KL10], the problem of maximizing the rate of one link while fixing the rate of the

other link in the two-user MISO IFC is solved by a feasibility second order cone program

(SOCP). Accordingly, only points on the Pareto boundary of the two-user MISO IFC are

obtained. Recently in [LKL11a], the parametrization for the two-user case in [JLD08]

is used to characterize in closed form the beamforming vectors necessary and sufficient

to achieve all Pareto optimal points, i.e. a single real-valued parameter is needed to

characterize all Pareto optimal points in the two-user MISO IFC.

In [ZG09], the Pareto boundary of the two-user MISO IFC rate region is parameter-

ized by two real-valued parameters each between zero and infinity. This parametriza-

tion relies on the virtual SINR framework proposed in [RFLT98] and relates to the

parametrization in [JL10]. The virtual SINR framework in [RFLT98] is based on a du-

ality between the uplink and the downlink in the MISO IFC. This framework is exploited

for solving the problem of minimizing total network transmit power subject to SINR

requirements at the receivers. A more general duality between the uplink and downlink

in MISO channels is constructed in [DY10] for a multicell setting with multiple users

served in each cell. The problem of minimizing transmitted power subject to receiver

SINR requirements is solved considering different types of transmit power constraints.

The K(K − 1) complex-valued parametrization in [JL10] for the K-user case has

been recently improved to a K(K − 1) real-valued parametrization in [SCP11, ZC10,

MJ11]. In [SCP11], the K-user MISO IFC is considered with the capabilities of time-

sharing (scheduling) the resources between the links. The optimality of single-stream

beamforming to achieve all Pareto optimal points is proven. Moreover, a parametrization

of the beamforming vectors that achieve all points on the Pareto boundary of the MISO

IFC rate region is provided requiring K(K − 1) real-valued parameters each between

0 and π. In [ZC10], the authors characterize the Pareto boundary of the MISO IFC

through controlling interference levels at the receivers. The necessary beamforming

vectors to achieve all Pareto optimal points are parameterized by K(K − 1) real-valued

parameters each between zero and infinity. Interestingly, the acquired parametrization

for K users in [ZC10] is similar as in [ZG09] for the case of full power transmission.
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However, the optimality of the proposed parametrization in [ZG09] is only studied for

the two-user case. The necessary beamforming vectors to achieve all Pareto optimal

points in a general MISO setting is characterized in [Jor10, MJ11]. The characterization

exploits the concept of power gain region associated with a transmitter. The power gain

region illustrates the efficient tradeoff between maximizing intended power gains and

minimizing interference at unintended receivers. Accordingly, efficient transmission can

be characterized in any setting in which the utility functions are monotonic in received

power gains. The number of required parameters in a MISO setting with T transmitters

and K receivers is T (K − 1) where each parameter is between zero and one.

Specific points on the Pareto boundary of the MISO IFC rate region can be com-

puted using monotonic optimization techniques [Tuy00]. These methods exploit the

monotonicity properties of a global objective function. The optimal solution is found

by systematically partitioning the utility space and removing regions where the solution

may not lie. Monotonic optimization techniques require high computational complex-

ity. However, they provide computational structure to solve nonconvex optimization

problems which possess the monotonicity properties in the optimization variables. In

[RTSH11], a global objective function is used which incorporates as special cases the

maximum weighted sum-rate, proportional-fair rate, and max-min solutions. These

points are found by a branch and bound algorithm in the MISO IFC and MISO BC.

Monotonic optimization has been recently applied in [LZC12] to calculate the maximum

weighted sum-rate in the SISO, SIMO, and MISO IFC. Moreover, monotonic optimiza-

tion is exploited in [UB12] to calculate the maximum weighted sum-rate, proportional-

fair rate, and max-min points in a multicell setting with multiple users in each cell. The

framework also solves the problem of optimal time-sharing between the users.

Characterization of Pareto optimal points in cooperative multicell settings is con-

ducted in [BZGO10, BBO12, BJBO11]. In cooperative multicell settings, signals in-

tended for the users can be transmitted from multiple base stations in order to enhance

the overall system performance. In [BZGO10], all Pareto optimal beamforming vec-

tors for both cases of perfect and partial CSI at the transmitters are parameterized by

K(K −1) complex-valued parameters. For perfect CSI at the transmitters and including

dynamic transmitter cooperation for common receiver transmission, a parametrization

of the efficient beamforming vector is provided in [BBO12] with general linear transmit

power constraint at the transmitters. The number of required parameters is K + L − 1,

where L is the number of linear transmit power constraints. For per transmitter power

constraint, 2K − 1 parameters are required each between zero and one. Thus, an im-

provement to the parameterizations requiring K(K − 1) real-values is achieved. Also in
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[BBO12], the calculation of each point on the Pareto boundary is done by using a bisec-

tion method and a quasi-convex feasibility problem. In [BJBO11], a general framework

for multicell multicarrier transmission with dynamic cooperation between the transmit-

ters is provided with general transmit power constraints. Optimality properties such

as single-stream beamforming and the conditions for full power transmission are char-

acterized. Moreover, a parametrization of the Pareto optimal beamforming vectors is

provided with KC + L real-valued parameters each between zero and one, where C and

L are the number of subcarriers and the number of linear transmit power constraints,

respectively. Considering a single carrier and per transmitter power constraints, the

number of parameters in [BJBO11] is 2K. In a multicell MISO setting with uncer-

tainty in CSI at the transmitters, robust Pareto optimal beamforming is obtained by

robust fairness-profile optimization in [BZBO12]. All Pareto optimal points in the per-

formance region are achieved requiring K − 1 real-valued parameters. In addition, a

monotonic optimization algorithm is applied to achieve specific Pareto optimal points

such as maximum sum and proportional fair performance points.

In the case of partial CSI at the transmitters, characterization of the Pareto optimal

transmit covariance matrices for the two-user MISO IFC is done in [LLJ10]. In [LKL09],

it is shown that the characterization in [LLJ10] with the restriction of single-stream

beamforming is a combination of MRT and ZF beamforming. Also with the restriction

of single-stream beamforming, the Pareto boundary of the two-user MISO IFC with

partial CSI at the transmitters is calculated in [KGLL09] using semidefinite relaxation

and semidefinite programming (SDP). The problem is cast as maximizing the rate of

one link while fixing the rate of the other.

All the results mentioned above hold for the case of single-user decoding (SUD) ca-

pabilities at the receiver, i.e., the receivers treat interference as noise. Considering

multi-user decoding (MUD) capable receivers, the necessary Pareto optimal beamform-

ing vectors in the two-user MISO IFC is characterized in [HGJM11]. In [LKL11b], an

efficient algorithm is proposed for the computation of Pareto optimal points in the rate

region with MUD capabilities.

Coordination Mechanisms

The real-valued parametrization for the two-user case in [JLD08] has been important for

designing efficient distributed resource allocation schemes. In [HG08], this parametriza-

tion is utilized to propose a bargaining algorithm that requires two-bit signaling between

the transmitters. Starting in joint MRT (Nash equilibrium), the transmitters reduce

their beamforming parameters in each iteration by an equal step-length leading to joint
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increase in the links’ rates. In [LK10], a similar algorithm is proposed for the cases

of perfect and imperfect CSI. At each iteration, each transmitter optimizes its trans-

mission to reduce a fixed amount of interference power at unintended receivers. Both

algorithms in [HG08] and [LK10] terminate when at least one link experiences reduction

in its outcome. While both algorithms improve the joint performance of the systems

from the Nash equilibrium, these outcomes are not Pareto optimal. Extension to the

precoding design in MIMO IFC is done in [HG10].

In [ZC10], a distributed algorithm is proposed that is performed between link pairs

in the MISO IFC. The transmitters exchange interference levels in each iteration and

optimize their transmission such that these interference levels are met at unintended

receivers. The interference levels are updated based on a necessary condition for Pareto

optimality. Although this condition is not proven to be also sufficient, numerical evi-

dence shows that the algorithm converges to a Pareto optimal outcome almost surely.

In [LDL11], after deriving the complexity results on finding specific Pareto optimal

points in the MISO IFC, a distributed algorithm is proposed to find Pareto optimal

points such as the maximum sum-rate. The proposed algorithm requires perfect local

CSI at transmitters as well as the exchange of scalar values regarding received powers

in each iteration. The algorithm is guaranteed to converge to a local optimum. In

[QZLC11], distributed algorithms are proposed where the computational load of Pareto

optimal beamforming vectors is distributed and carried out sequentially at the trans-

mitters. The algorithms terminate at Pareto optimal points requiring the exchange of

the optimization parameters between the transmitters.

In the K-user MISO IFC, a low complexity one-shot coordination mechanism is pro-

posed in [ZG09] in which each transmitter independently maximizes its virtual SINR.

The virtual SINR of a transmitter is the SINR achieved when virtually regarding the

single antenna receivers as transmitters and the actual transmitters as the multi-antenna

receivers. The virtual SINR is maximized by an MMSE beamforming structure. For

the two-user case, the proposed mechanism is proven to be Pareto optimal. The work

in [ZG09] is extended to the precoding design in MIMO settings in [ZHG09]. Further-

more, the extension to cooperative multicell settings is studied in [ZG10] in which all

transmitters know the signals intended to all receivers.

The appealing property of MMSE transmit beamforming is that it only requires

local CSI at a transmitter. Moreover, in cases of low and high SNR, joint MMSE

beamforming is sum-rate optimal because the MMSE beamforming vector converges to

MRT beamforming at low SNR and to ZF at high SNR. This explains the fact that

MMSE transmit beamforming design as in [ZG09] has been proposed in several works
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[HSHS08, LNR+09, LPNV10, PPL11]. In [HSHS08], MMSE beamforming maximizes

the signal-to-leakage plus noise ratio. In [LNR+09], the high SNR approximation of

the sum-rate in a two-user MISO IFC is optimized leading to an MMSE beamforming

design. Extension of [LNR+09] to MISO multicarrier settings is done in [LRB+10]. In

[PPL10], using the high SNR approximation of the weighted sum-rate, suboptimal dis-

tributed beamforming techniques are provided. There, the parametrization in [ZG09]

is utilized to propose a heuristic algorithm which iteratively updates the parameters

to improve the links’ sum-rate. In [VPNL11], the authors study the reciprocity of the

uplink and downlink channels in the MISO IFC when automatic gain control at the

receivers is considered. Automatic gain control adapts the signal power at the receiver

to meet a specifically defined value. The corresponding transmit beamforming design

in the MISO IFC is termed EIG beamforming. In [PNLV11], EIG beamforming is used

with transmit power adaptation such that maximum restricted power levels at each

receiver are not exceeded.

The works in [BN10, DUD11] provide heuristic ZF beamforming schemes in multicell

settings. The objective is to efficiently select a subset of receivers at which interference is

nulled by applying ZF transmission. In [BN10], the transmitters perform ZF to receivers

which are mostly affected by interference. In [DUD11], a successive greedy user selection

approach is applied with the objective of maximizing the system sum-rate.

2.3.2. Game Theoretic and Microeconomic Theory Applications

In this section, related work that applies models from game theory and microeconomic

theory are discussed. While game theoretic models have been used plentifully for re-

source allocation problems in wireless networks, there exists relatively little work that

apply microeconomic models.

Game Theory for Resource Allocation in Wireless Networks

Game theoretic models for resource allocation in wireless networks have been successfully

applied in numerous works. In this section, we only mention a few results to highlight

the advantages in the game theoretic approaches. First, we mention applications of

noncooperative games for distributed resource allocation problems. These include games

in strategic form and in extensive form. Afterwards, we present works that consider

cooperative game theoretic models.

Two-player zero-sum games are considered in [PCL03, JB04] to find robust transmis-

sion strategies for a MIMO link. In [PCL03], worst-case transmission is investigated
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by studying a game between the MIMO link and nature. Nature chooses the chan-

nel matrix, and the transmitter optimizes its strategy to maximize the link capacity.

It is found that robust transmission, corresponding to the Nash equilibrium (min-max

solution), is a transmit covariance matrix with uniform power allocation. In [JB04], ro-

bust transmission according to worst-case interference is studied. Here, nature chooses

the interference covariance matrix from a set of alternatives, and the link optimizes

the transmitter and receiver covariance matrices accordingly. Robust transmission is

determined by the min-max solution.

In distributed resource allocation schemes, each user exploits available local informa-

tion to optimize his utility function independently. Noncooperative game models are

consistent with this approach. If the users (players) independently choose their best

response to the strategies of the other players, the Nash equilibrium is the stable state

at which no player can improve his utility by choosing another strategy. Accordingly,

distributed operating points are Nash equilibria.

In multicarrier SISO IFC, waterfilling power allocation maximizes the rate of a link

for given power allocations of the other transmitters. The global stability of distributed

iterative waterfilling is the stabiliy of the Nash equilibrium of a strategic game between

the links. In [SPB08], conditions for the uniqueness of the Nash equilibrium and global

convergence of iterative waterfilling are characterized. In the MIMO IFC, analysis of

the Nash equilibrium regarding uniqueness and global stability is done in [SPB09].

Pricing is a mechanism used to enforce distributed system efficiency. For example,

energy-efficiency can be acquired if the utility function of a transmitter is constructed

such that excessive transmission powers are penalized [SMG01, JBN10]. An overview of

distributed energy efficient power control in multiuser systems can be found in [MPS07].

In [SMG01], pricing to reduce transmission powers is applied to achieve joint perfor-

mance improvements in the distributed system. In [JBN10], the Pareto boundaries of

multiple access channels are characterized where the user utilities include linear pric-

ing terms. In SISO MAC, linear pricing has been applied in [SMG02] to improve the

outcome of the users without pricing. The authors in [SMG02] prove the existence and

global stability of the Nash equilibrium by showing that the considered game is a su-

permodular game [Top98]. Supermodular games are a class of noncooperative games

which have interesting properties regarding the structure of the Nash equilibria as well

as the convergence properties of distributed algorithms [AA03]. The properties of super-

modular games have been also exploited in [HBH06, SSB+09]. In [HBH06], distributed

power control in ad hoc networks is studied with pricing determined according to the

generated interference. In [SSB+09], distributed power allocation and beamforming is
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proposed in multi-antenna IFCs. Each link independently maximizes its utility func-

tion taking into account a pricing term which depends on the interference generated

at unintended receivers. Accordingly, the performance of the system is improved in a

distributed fashion.

Games in extensive form have been applied in [LEG08, EPT07, LE11]2. In [LEG08], a

Stackelberg game is proposed in multiple access channels. The base station is the leader

which decides first for the decoding order of the users. The users are the followers which

choose their transmission strategies after the base station. The Stackelberg equilibrium

is shown to achieve the corner points of the capacity region. Moreover in [LEG08], a

repeated game is formulated to achieve points on the Pareto boundary of the capac-

ity region. In [EPT07], after showing that the Nash equilibrium in spectrum sharing

settings is generally inefficient, a repeated game is formulated to provide incentives for

the transmitters to choose their strategies such that the outcome is Pareto optimal.

The bargaining model of alternating offers [Rub82] is successfully applied in [LE11] to

achieve Pareto optimal points in interference channels.

Noncooperative and cooperative game theoretic models for conflict analysis in the

interference channel are discussed in [LJLM09]. In [LJ08], it is shown that MRT is a

dominant strategy for each transmitter in the MISO IFC. That is, each noncooperative

transmitter chooses MRT independent of the beamforming vectors used at the other

transmitters. The Nash equilibrium, corresponding to joint MRT, is shown to be ineffi-

cient in general. Therefore, a cooperative Pareto optimal solution is proposed according

to the Nash bargaining solution (NBS). In [LZ08], the NBS has been characterized for

the multicarrier SISO IFC. The NBS is acceptable for all links since it provides rates

jointly larger than at the Nash equilibrium. Another solution from axiomatic bargain-

ing theory is the Kalai-Smorodinsky (KS) solution. In [NS09], the KS is studied in the

MISO IFC and an algorithm is provided to reach the solution. Both the NBS and KS

are desirable outcomes because they are Pareto optimal and give for each player utilities

higher than without cooperation.

Games in coalitional form provide cooperative solutions for resource allocation prob-

lems. A tutorial on the application of coalitional games in wireless networks is given in

[SHD+09]. In [MSM08], transmitter and receiver cooperation of single-antenna links is

considered. Coalitions between transmitters and receivers lead to multi-antenna systems

which enhance the performance of the links. Coalition formation in multiuser systems

is studied in [SHDH09]. Users with single-antennas, initially assigned orthogonal re-

2Stackelberg games, repeated games as well as the game of alternating offers are games in extensive

form [OR94].
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sources, cooperate to form multi-antenna systems. Significant gains are achieved by

using tools from coalitional game theory which provide structured cooperation methods

between the users.

Microeconomic Theory for Resource Allocation in Communication

Networks

Models from microeconomic theory have found a few applications for resource alloca-

tion problems in communication networks. In [Ye07], the competitive market model

is considered for allocating transmit powers to the links sharing a common frequency

band. The links purchase their transmit power subject to budget constraints. An agent,

referred to as the market, determines the unit prices of the power spectra. Existence

of the Walrasian equilibrium is proven and conditions for its uniqueness are provided.

In [LTY09], the work in [Ye07] is extended to the problem of determining the budgets

of the links to satisfy specific user requirements. For example, the links’ budgets are

determined such that all users achieve equal utilities in equilibrium. In [XAY10], the

Walrasian equilibrium is formulated as a linear complementarity problem (LCP) for a

multicarrier setting, and a decentralized price-adjustment process is proposed to reach

the equilibrium. In each iteration, the links send their power demands to the spectrum

manager which adjusts the prices according to the total demand and supply of power.

The work in [XAY10] supports both works in [Ye07, LTY09] in providing a mechanism

to reach the Walrasian equilibrium.

Spectrum trading in cognitive radio is analyzed using microeconomic models in [NH08].

In this setting, primary users sell their owned spectrum to secondary users. Three mod-

els to determine the prices of the spectrum are considered: The first model corresponds

to a competitive market in which the prices are determined according to the Walrasian

equilibrium. The second model is a Cournot oligopoly in which the primary service

providers compete with each other to determine their prices. The equilibrium in this

model corresponds to a Nash equilibrium. The third model considers cooperative pri-

mary users which jointly determine the spectrum prices to maximize their total profit.

Also in cognitive radio settings, hierarchical spectrum sharing is modeled as an inter-

related market in [NH10]. The service in one tier of the hierarchical system sells its

spectrum to the service in the lower tier. The pricing mechanism for the bandwidth al-

locations between the services corresponds to the Walrasian equilibrium, i.e. the supply

equates the demand of the resources. In [TGC10], the Walrasian equilibrium is used for

simultaneous bitrate allocation for multiple video streams. There, the Edgeworth box

[Wal74] is used as a tool to illustrate the efficient allocation of the streams.
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Game Theoretic Applications

This chapter deals with the application of game theory for conflict analysis and resource

allocation in the MISO IFC. The links are assumed to be rational and intelligent as

discussed in Section 1.4.2. In the first section of this chapter, the links are assumed to

be noncooperative. In this case, either there is no possibility of communication between

the links, or an arbitrator is connected to the links to coordinate their actions. In the

second section, we assume that the links can directly communicate with each other. For

this case, cooperative games are applied to determine cooperative solutions between the

links.

3.1. Noncooperative Games

In game theory, games in strategic form determine outcomes of a conflict situation

between noncooperative players. The noncooperative outcome corresponds to strategies

the players would choose if cooperation among them is not feasible. The complexity of

implementing a noncooperative outcome is much less than a cooperative outcome since

the former requires no overhead in communication between the players. If cooperation

between the players is feasible, the noncooperative outcome can be considered as a

threat point or a disagreement point in case cooperation fails. That is, each player

cooperates with another player under the condition that its performance improves from

the noncooperative outcome.

3.1.1. Game in Strategic Form

The players in our setting are the links and a game in strategic form between them is

defined by the tuple [OR94, Definition 11.1]

〈K, (Ak)k∈K, (Rk)k∈K〉, (3.1)
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where K is the set of players, Ak is the strategy space of player k in (2.1), and Rk is the

achievable rate function of player k in (2.5).

The solution of the strategic game in (3.1) is a Nash equilibrium1.

Definition 1. A Nash equilibrium [OR94, Definition 14.1] of a strategic game

〈K, (Ak)k∈K, (Rk)k∈K〉 (3.2)

is a strategy profile (wNE

1 , ..., wNE

K ) ∈ A1 × · · · × AK such that for every player k ∈ K

Rk(wNE

1 , . . . , wNE

K ) ≥ Rk(wNE

1 , . . . , wNE

k−1, wk, wNE

k+1, . . . , wNE

K ), for all wk ∈ Ak. (3.3)

In words, a Nash equilibrium is a strategy profile in which no player has the incentive

to change his strategy if all other players choose their Nash equilibrium strategy. From

Definition 1, each player would always choose his best response strategy to the strategies

chosen by the other player. That is, each player decides for the strategy in his strategy

set which maximizes his utility given the strategies of the other players. Consequently,

the Nash equilibrium is a state of mutual best responses.

Given a set of beamforming vectors of all other players (w1, . . . , wk−1, wk+1, . . . , wK),

transmitter k’s best response is the beamforming vector wk which maximizes his achiev-

able rate as

maximize
wk∈Ak

log2

(
1 +

|hH
kkwk|2

σ2 +
∑

j 6=k |hH
jkwj |2

)
. (3.4)

The solution of the above problem is maximum ratio transmission (MRT) written as

wMRT
k =

hkk

‖hkk‖ . (3.5)

The MRT beamforming strategy of player k in (3.5) does not depend on the strategies

of the other players. Thus, each transmitter chooses its MRT beamforming vector to

maximize its achievable rate irrespective of the strategy choice of the other transmitters.

Consequently, the Nash equilibrium of our strategic game is unique and corresponds to

joint MRT (wMRT
1 , . . . , wMRT

K ). In addition, the Nash equilibrium of our game belongs

to a strong notion of equilibrium called dominant strategy equilibrium.

Definition 2. A dominant strategy equilibrium [OR94, Definition 181.1] of a strategic

game

〈K, (Ak)k∈K, (Rk)k∈K〉 (3.6)

1The Nash equilibrium in the MISO IFC has been studied in [LDJ08].
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is a strategy profile (w∗
1, ..., w∗

K) ∈ A1 × · · · × AK such that for every player k ∈ K

Rk(w1, . . . , wk−1, w∗
k, wk+1, . . . , wK) ≥ Rk(w1, . . . , wK),

for all (w1, . . . , wK) ∈ A1 × · · · × AK . (3.7)

In words, a dominant strategy equilibrium consists of the strategies of the players, where

each player chooses his best response strategy irrespective of the strategies chosen by

the other players.

The Nash equilibrium in our game is a state in which the links would operate without

requiring any overhead for communication with one another. However, if the outcome

in Nash equilibrium is not efficient, methods for cooperation or coordination between

the links have to be provided.

The best response of a player k in (3.4) maximizes the intended power gain without

taking into account the interference it generates at the other receivers. Consequently,

interference which is treated as additive noise at the receivers can be uncontrollably

high to degrade the performance of the noncooperative systems. Generally, in spectrum

sharing scenarios the Nash equilibrium is not efficient because each noncooperative

transmitter is indifferent to the amount of interference it generates at the other receivers

[EPT07]. Coexisting noncooperative links can end up in high mutual interference which

leads to saturation in the rates of each system with increasing transmission power.

The efficiency of the Nash equilibrium outcome depends on its distance to the Pareto

boundary of the rate region. In [LJ08], it is shown that the Nash equilibrium is close to

the Pareto boundary in the low SNR regime. In the high SNR regime, zero forcing (ZF)

transmission is near Pareto optimal, while the Nash equilibrium has poor performance

[LDJ08].

In Figure 3.1, Figure 3.2, and Figure 3.3, we plot two-user rate regions2 for −10,

5 and 20 dB SNR, respectively. In Figure 3.1, the Nash equilibrium is near Pareto

optimal while joint ZF has worse performance. In the low SNR regime, noise power

dominates the interference power at each receiver. Hence, the users must maximize the

intended power gain with MRT with which the interference is negligible with respect

to noise. In Figure 3.2, the Nash equilibrium and joint ZF are away from the Pareto

boundary. In Figure 3.3, the Nash equilibrium has bad performance while joint ZF

is near Pareto optimal. At high SNR, the noise power is negligible in comparison to

interference and therefore nulling the interference at unintended receivers with ZF brings

joint improvement to the links’ performance.

2The Pareto boundary of the two-user rate region is plotted using the closed form solution presented

later in Chapter 4.1.
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Figure 3.1.: Two-user rate region at −10 dB SNR.
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Figure 3.2.: Two-user rate region at 5 dB SNR.

A measure called the Price of Anarchy (PoA) quantifies the efficiency of the Nash

equilibrium3. The PoA is defined as the ratio of the maximum sum utility to the sum

utility in the worst-case Nash equilibrium [KP99, Pap01]:

PoA =
maximum sum utility

worst-case sum utility in Nash equilibrium
. (3.8)

If the PoA is one, then the Nash equilibrium coincides with the maximum sum utility

point. If the PoA is two, then two times the sum utility in Nash equilibrium can be

achieved if coordination overhead is made to improve the efficiency of the noncooperative

state. A high PoA is an indication for the necessity of cooperation or coordination

between the players. We compare the Nash equilibrium in our setting to the maximum

3The analysis of the Price of Anarchy in the MISO IFC has been done in [LJLM09].
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Figure 3.3.: Two-user rate region at 20 dB SNR.
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Figure 3.4.: Plot of the Price of Anarchy in the MISO IFC for increasing SNR.

achievable sum rate found by grid search for different SNR values in Figure 3.4. In the

low SNR regime, the Nash equilibrium is sum rate optimal. The inefficiency of the sum

rate in Nash equilibrium increases for increasing SNR.

3.1.2. Constraints for Efficient Nash Equilibrium

The previous section has shown that the Nash equilibrium is generally not Pareto effi-

cient. In this section, we assume that there exists an arbitrator which coordinates the

actions of the players. Specifically, the arbitrator puts null-shaping constraints on the

strategy sets of the players. We characterize the necessary constraints to achieve all

Pareto optimal points in the rate region as Nash equilibria. A null-shaping constraint is
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a term used in underlay cognitive radio scenarios [GJMS09]. In an underlay cognitive

radio scenario, secondary users can share the communication resources with primary

users under the condition they do not impose quality of service (QoS) degradation to

the primary systems. A limited QoS degradation to the primary users is described

by interference temperature constraints (ITC) [Hay05]. When no interference on the

primary users is allowed, the constraint is said to be a null-shaping constraint [SPPF09].

Let wk be the beamforming vector used at transmitter k, null-shaping constraints in

the directions vk1, . . . , vkL are written as

|wH
k vki| = 0, i = 1, . . . , L. (3.9)

In order to be able to fulfill the L null-shaping constraints simultaneously, the number

of applied antennas at the transmitter has to be greater than L.

We apply the null-shaping constraints on the transmissions in our setting. However,

these constraints do not correspond to directions of primary users but are virtually

selected by the arbitrator in order to improve the efficiency of the Nash equilibrium.

The game in strategic form with null-shaping constraints is

〈K, (Ãk)k∈K, (Rk)k∈K〉, (3.10)

where the strategy set of each player k includes the null-shaping constraints as

Ãk = {wk ∈ Ak : |wH
k vki| = 0, i = 1, . . . , L}. (3.11)

Accordingly, the null-shaping constraints for a player k reduce his strategy space from

Ak in (2.1) to Ãk. Player k’s dominant strategy, which solves the following problem:

maximize
wk∈Ãk

log2

(
1 +

|hH
kkwk|2

σ2 +
∑

j 6=k |hH
jkwj |2

)
, (3.12)

is

wk =
Π⊥

V k
hkk

‖Π⊥
V k

hkk‖
. (3.13)

where V k = [vk1, . . . , vkL]. Consequently, the beamforming vector in (3.13) is the Nash

equilibrium strategy of the strategic game with null-shaping constraints in (3.10).

Efficient design of null-shaping constraints leads to Pareto optimal points in the

achievable rate region with the applied beamforming vectors having the form of (3.13).

Corollary 1. Assume that the number of antennas at each transmitter is larger than

or equal to the number of links, i.e. Nk ≥ K for all k = 1, . . . , K, and define

Zk(ξk1, . . . , ξkK) = [zk1(ξk1, . . . , ξkK), ..., zkK−1(ξk1, . . . , ξkK)], (3.14)
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with

zki(ξk1, . . . , ξkK) = vi


ξkkhkkhH

kk −
∑

ℓ 6=k

ξkℓhkℓh
H
kℓ


, (3.15)

where ξkℓ are nonnegative real weights satisfying
∑K

ℓ=1 ξkℓ = 1. All points on the Pareto

boundary of the rate region R can be achieved by the beamforming vectors

wk(ξk1, . . . , ξkK) =
Π⊥

Zk(ξk1,...,ξkK)hkk

‖Π⊥
Zk(ξk1,...,ξkK)hkk‖

, k = 1, . . . , K. (3.16)

Proof. The proof is provided in Section 3.3.1.

In Corollary 1, the design of the null-shaping constraints is given in (3.14), and the

efficient transmission strategies are in (3.16). Here, K −1 null-shaping constraints are to

be applied on each transmitter, and the number of required real-valued parameters is the

same as in (2.12). Hence, the complexity of parameterizing the efficient beamforming

vectors is similar in Corollary 1 to the parametrization in (2.12).

Through the design of the null-shaping constraints in Corollary 1, all Pareto optimal

points of the rate region are characterized by transmission strategies that are Nash

equilibria. The interesting observations are as follows. Null-shaping constraints are

sufficient to characterize the Pareto boundary of the MISO IFC rate region. Moreover,

given the null-shaping constraints, the transmitters are required to be noncooperative in

order to achieve efficient operating points. Alternatively, the noncooperative outcome

of the players is more efficient when the players’ strategy sets are made smaller. This is

in analogy with the Braess paradox [Bra68] in traffic planning where investing in new

roads for a traffic network in Nash equilibrium can increase the delay time for each

driver.
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3.2. Cooperative Games

In this section, cooperation between the links is studied using coalitional games. The

links can directly communicate with each other to develop possible cooperation. While

noncooperative transmission of a link corresponds to MRT, we choose two cooperative

transmission schemes which take into account the interference generated at the unin-

tended receivers. These cooperative transmission schemes are zero forcing transmission

and Wiener filter precoding.

3.2.1. Game in Coalitional Form

In game theory, cooperative games are described by games in coalitional form. A game

in coalitional form [OR94, Definition 268.2] is defined by the tuple

〈K, X , V, (Rk)k∈K〉, (3.17)

where K is the set of players, X is the set of possible joint actions of the players in (2.3),

V assigns to every coalition S (a nonempty subset of K) a set V (S) ⊆ X , and Rk is

the utility of player k given in (2.5). A coalition S is a set of players that are willing to

cooperate, and V (S) defines their joint feasible strategies. In this game, the payoff of a

player cannot be transferred to other players in his coalition. The game is said to have

nontransferable utilities.

A coalitional game4 between the links determines the strategy profiles with which all

the links have the incentive to cooperate jointly. This set of strategy profiles makes up

the core of the coalitional game.

Definition 3. The core of a coalitional game [OR94, Definition 268.3] is the set of all

strategy profiles (xk)k∈K ∈ V (K) for which there is no coalition S and (yk)k∈K ∈ V (S)

for which Rk(y1, ..., yK) > Rk(x1, ..., xK) for all k ∈ S.

The core is not empty if there exists no coalition S ⊂ K which can deviate from the

grand coalition and provide its members with payoffs higher than in the grand coalition.

In Definition 3, the players outside coalition S are not explicitly considered in terms

of their choices of strategies. Several models exist that describe the behavior of the

players in K\S [Mar07]. Originally, von Neumann and Morgenstern in [vNM44] and

later elaborated upon in [Aum67], was to consider worst-case behavior. The members

of a coalition S should consider their payoffs which K\S cannot prevent them from

4A tutorial on the application of coalitional games in communication networks can be found in

[SHD+09].
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S
deviation of S

single-player coalition

grand coalition

Figure 3.5.: In the γ-core, no coalition S has the incentive to deviate from the grand

coalition.

achieving (β-core) or alternatively the payoffs that they can guarantee for themselves

(α-core). For our model, it is unusual to think that the links outside a coalition S
would choose their strategies jointly to minimize the payoff of the members of S. We

adopt the γ-model from [HK83] and assume that all players outside a coalition S do

not cooperate, i.e., build single-player coalitions. Coalition deviation in the γ-core is

illustrated in Figure 3.5.

For the cooperation strategies in a coalition S, we consider two simple non-iterative

transmission schemes which can be applied in a distributed manner. These are ZF

transmission and transmit Wiener filter (WF) [JUN05].

Coalitional Game with Zero Forcing Beamforming

The transmitters choose MRT if they are not cooperative, i.e. are in single-player

coalitions. If a transmitter cooperates with a set of links, then it performs ZF in the

directions of the corresponding receivers. Hence, we define the mapping

V ZF(S) = {(wk)k∈K ∈ X : wk = wZF
k→S for k ∈ S, wℓ = wMRT

ℓ for ℓ ∈ K\S}, (3.18)

where wZF
k→S is transmitter k’s ZF beamforming vector to the links in S written as

wZF
k→S =

Π⊥
Zk→S

hkk

‖Π⊥
Zk→S

hkk‖ , Zk→S = (hkℓ)ℓ∈S\{k}. (3.19)

Observe that if the number of antennas Nk < |S|, then ZF in (3.19) is the zero vector,

i.e. transmitter k switches its transmission off. Similar to the definition of the strat-

egy profile V ZF(S) in (3.18), it is possible to consider different cooperative transmit

beamforming than ZF in a coalition. The game in coalitional form with ZF cooperation

is

〈K, X , V ZF, (Rk)k∈K〉. (3.20)

43



Chapter 3. Game Theoretic Applications

According to Definition 3, the γ-core is not empty if and only if

Rk(V ZF(S)) ≤ Rk(V ZF(K)), for all k ∈ S, for all S ⊂ K. (3.21)

The next result provides the condition under which the γ-core of our game is not empty.

Proposition 1. The γ-core of the coalitional game in (3.20) is not empty if and only if

σ2 ≤ σ̄2 := min
S⊂K

min
k∈S






∑
ℓ∈K\S

|hH
ℓkwMRT

ℓ |2|hH
kkwZF

k→K|2

|hH
kkwZF

k→S |2 − |hH
kkwZF

k→K|2





. (3.22)

Proof. The proof is provided in Section 3.3.2.

Proposition 1 implies that for all SNR values 1/σ2 ≥ 1/σ̄2, it is profitable for all

players to jointly perform ZF. If a transmitter’s number of antennas is less than the

number of receivers in the network, σ̄2 will be zero since there exists a transmitter

which cannot perform ZF to all receivers. This means that the grand coalition will not

form in this case.

Next, we determine the condition under which no player has the incentive to build a

coalition with other players. In this case, the following must hold:

Rk(V ZF({k})) > Rk(V ZF(S)), for all k ∈ S, for all S ⊆ K, |S| > 1. (3.23)

Notice that V ZF({k}) = (wMRT
1 , ..., wMRT

K ) from (3.18). The condition on σ2 for (3.23) to

hold is given in the next result. The proof uses similar steps as the proof of Proposition

1.

Proposition 2. No player has an incentive to build a coalition with another player

using ZF transmission if

σ2 > σ2 := max
S⊆K

max
k∈S






|hH
kkwZF

k→S |2 ∑
ℓ∈K\{k}

|hH
ℓkwMRT

ℓ |2 − ‖hkk‖2 ∑
ℓ∈K\S

|hH
ℓkwMRT

ℓ |2

‖hkk‖2 − |hH
kkwZF

k→S |2





.

(3.24)

From Proposition 2, we have that for all SNR values 1/σ2 < 1/σ2, it is not profitable

for any user to cooperate with ZF. Figure 3.6 summarizes the results from Proposition

1 and Proposition 2. It can be observed that there is an SNR range in which distinct

subsets of the links can group to build coalitions. This mechanism is studied under

games in partition form in Section 3.2.2.
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full cooperationno cooperation

1

σ̄2

1

σ2

Figure 3.6.: Illustration of the conditions for full cooperation (nonempty core) and con-

ditions for no cooperation (single-player coalitions) for ZF coalitional game.

Coalitional Game with Wiener Filter Precoding

Generally, different cooperative transmission scheme can be applied for cooperation

between the links in a coalitional game. In this section, we assume the players cooperate

by performing WF precoding to the players in their own coalition. A transmitter k’s

WF beamforming vector for coalition S is written as

wWF
k→S =

(Iσ2 +
∑

ℓ∈S\{k} hkℓh
H
kℓ)

−1hkk

‖(Iσ2 +
∑

ℓ∈S\{k} hkℓh
H
kℓ)−1hkk‖

. (3.25)

The WF beamforming vector in (3.25) has interesting behavior for asymptotic SNR

cases [JUN05]. In the high SNR regime (σ2 → 0), wWF
k→S converges to wZF

k→S in (3.19).

In the low SNR regime (σ2 → ∞), wWF
k→S converges to wMRT

k in (3.5).

The game in coalitional form with WF precoding is

〈K, X , V WF, (Rk)k∈K〉. (3.26)

where the mapping V WF which defines the strategy profile according to WF cooperation

scheme is

V WF(S) = {(wk)k∈K ∈ X : wk = wWF
k→S for k ∈ S, wℓ = wMRT

ℓ for ℓ ∈ K\S}. (3.27)

Conditions for nonempty γ-core of the coalitional game in (3.26) in terms of an SNR

threshold is hard to characterize because the noise power in (3.25) is inside the matrix

inverse. However, according to numerical simulations, we find that the SNR threshold

above which the γ-core of the coalitional game with WF precoding is nonempty is always

less than that with ZF cooperation. In other words, the SNR range in which the players

have the incentive to jointly cooperate with WF precoding is according to numerical

evidence larger than the SNR range in which the players will jointly cooperate with ZF.
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S1

S2

S3

Figure 3.7.: Illustration of a coalition structure C = {S1, S2, S3}.

3.2.2. Coalition Formation

In the previous section, we have described the γ-core which reveals the feasibility for

the formation of the grand coalition. In this section, we consider coalition formation

games [AD74, Mar07]. These games describe situations in which the players can group

to form a coalition structure. A coalition structure C is a partition of the grand coalition

K into a set of disjoint coalitions {S1, ..., SL} where
⋃L

j=1 Sj = K and
⋂L

j=1 Sj = ∅. In

Figure 3.7, an example coalition structure is illustrated.

We consider two scenarios for player cooperation in a coalition. These scenarios

correspond to ZF and WF transmissions. Given a coalition structure C = {S1, ..., SL},

the strategy profile of the players according to ZF or WF is defined by

F bf(C = {S1, ..., SL}) := {(wk)k∈K ∈ X : wk = wbf
k→Sj

for k ∈ Sj, j = 1, ..., L}, (3.28)

where bf ∈ {ZF,WF} with wZF
k→Sj

and wWF
k→Sj

defined in (3.19) and (3.25), respectively.

Notice that if |Sj | = 1 and k ∈ Sj, then wZF
k→Sj

= wWF
k→Sj

= wMRT
k . For a coalition

structure C, F ZF(C) is a strategy profile in which each player chooses ZF to the players

in his coalition. Similarly, F WF(C) is the strategy profile when WF is applied.

A comparison relation ⊲ compares two coalition structures C1 and C2. The nota-

tion C1 ⊲ C2 means that coalition structure C1 is preferred to C2. In [AW09], several

comparison relations are discussed. We use the Pareto order relation defined as

C1 ⊲ C2 ⇔
{

Rk(F bf(C1)) ≥ Rk(F bf(C2)), for all k ∈ K
}

, (3.29)

where the inequality in (3.29) is strict for at least one player k.

In coalition formation games, the stability of a coalition structure is important. A

coalition structure is stable if no set of players has the incentive to deviate and form

a different coalition structure. Coalition deviation is described by a defection function

which maps a coalition structure with all preferable alternatives. In [AW09], a defection

function Dhp is proposed which is based on simple rules of coalitions merging and split-

ting. A coalition structure C is Dhp-stable if the players are not interested in changing C
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through merge and split operations. The merge and split rules thus define a procedure

for coalition formation. This procedure has been applied in [SHDH09] for a wireless

multiple access network.

3.2.3. Merge-and-Split Algorithm

We shortly describe the merge-and-split algorithm [AW09, SHDH09]. The algorithm is

divided into two operations which are executed iteratively. Given C1 = {S1, ..., SL}, the

merge rule merges a set of coalitions T ⊆ C1 to a single coalition if the formed coalition

structure C2 satisfies the Pareto order relation C2 ⊲ C1. This operation is repeated until

no merges are possible.

Merge if C2 ⊲ C1

C1 C2

Figure 3.8.: An illustration of the merge operation.

In the split rule, a coalition Sk ∈ C1 splits into smaller coalitions if the obtained

coalition structure C2 satisfies C2 ⊲ C1. The split rule terminates when no further splits

in any coalition are possible.

C1 C2

Split if C2 ⊲ C1

Figure 3.9.: An illustration of the split operation.

The convergence of the algorithm is guaranteed due to the adopted Pareto order

relation in (3.29). Distributed implementation as well as a discussion on the complexity

of the merge-and-split algorithm can be found in [SHDH09].

We apply the merge-and-split algorithm for coalition formation in our setting. In

order to include the effect of distances between the links on the received power gains,

we use the path loss model in which the signal between a transmitter and a receiver

reduces in power in the rate of a path loss exponent. The path loss exponent depends on
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Figure 3.10.: Distribution of the links in the plane.

the propagation model and takes values between two and four. Let dkℓ be the distance

between transmitter k and a receiver ℓ in meters and α be the path loss exponent, we

write the channel vector hkℓ = d
−α/2
kℓ h̄kℓ with ‖h̄kℓ‖ = 1. In Figure 3.10, we generate

a sample distribution of 8 links in the plane. The transmitters are randomly placed

in a 3 km by 3 km square area. Each receiver k is placed randomly at a distance

dkk = 300 meters away from its transmitter k. We define the SNR as SNR= d−α
kk /σ2.

Each transmitter uses 12 antennas and the path loss exponent is set to α = 3. Using the

merge-and-split algorithm, we calculate the user rates at 15 dB SNR in Figure 3.11. At

SNR = 15 dB, the grand coalition forms with WF precoding and the coalition structure

with ZF beamforming is {{4, 5, 6, 7, 8}, {1}, {2}, {3}}, where the coalition {4, 5, 6, 7, 8}
is the cluster of links in the bottom right side of Figure 3.10. With both ZF and WF

cooperation schemes, joint improvement in the rates of the links is achieved from the

Nash equilibrium by link coalition formation.

Using the merge-and-split algorithm, the average rate of the 8 links is plotted for

increasing SNR in Figure 3.12. In the low SNR regime, single-player coalitions exist

with the ZF cooperation scheme supporting the result in Proposition 2. Moreover, at

low SNR it is observed that some players cooperate with WF transmission. This is
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Figure 3.11.: Link rates at 15 dB SNR.

because WF precoding converges to MRT transmission at low SNR. Note that in the

low SNR regime, the outcome with joint MRT is efficient as is revealed in Section 3.1.1.

In the mid SNR regime, coalition formation improves the joint performance of the links

from the Nash equilibrium. It is observed that with WF precoding, larger coalitions form

at lower SNR values than with ZF beamforming which explains the higher performance

gains with WF than with ZF. The optimal ZF and WF coalition structures that achieve

the maximum average user rate are found by exhaustive search. The average user rate

in Nash equilibrium saturates in the high SNR regime. This is contrary to ZF and WF

coalition formation where the average user rate increases linearly due to the formation

of the grand coalition. The formation of the grand coalition at high SNR supports the

result in Proposition 1. It is evident from Figure 3.11 and Figure 3.12 that enabling link

coalition formation, even with simple cooperative transmission schemes, leads to joint

performance improvement in the network.
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3.3. Proofs

3.3.1. Proof of Corollary 1

We prove that the gains achieved by the beamforming vectors in (3.16) are equal to the

gains achieved by the beamforming vectors given in (2.12). Define the matrix Mk as

Mk = ξkkhkkhH
kk︸ ︷︷ ︸

Ak

+
∑

ℓ 6=k

−ξkℓhkℓh
H
kℓ

︸ ︷︷ ︸
Bk

. (3.30)

The matrices Mk, Ak and Bk are Hermitian matrices of size Nk × Nk. The eigenval-

ues of Mk are real and we always consider them ordered in nondecreasing order, i.e.,

µ1(M k) ≤ µ2(M k) ≤ ... ≤ µNk
(Mk). Ak is a positive semidefinite matrix, Ak � 0,

and rank (Ak) = 1, i.e.,

0 = µ1(Ak) = . . . = µNk−1(Ak) ≤ µNk
(Ak). (3.31)

Bk consists of the sum of the negative of positive semidefinite matrices. Hence, Bk � 0

and rank (Bk) ≤ K − 1, which leads to the following properties on the eigenvalues:

µ1(Bk) ≤ . . . ≤ µK−1(Bk) ≤ 0, (3.32)

and

µK(Bk) = . . . = µNk
(Bk) = 0. (3.33)

Next, we study the eigenvalues of Mk = Ak + Bk. According to Weyl’s inequality of

the eigenvalues of the sum of Hermitian matrices [HJ85, Theorem 4.3.7] we have

µNk−1(M k) ≤ µNk−1(Ak) + µNk
(Bk) = 0, (3.34)

µK(M k) ≥ µ1(Ak) + µK(Bk) = 0. (3.35)

The eigenvalues of M k are ordered in nondecreasing order. Therefore, the following

eigenvalues of Mk are always equal to zero: µK(Mk) = ... = µNk−1(Mk) = 0. In

addition, the smallest K − 1 eigenvalues of M k are nonpositive.

If the dimension of space is larger than the number of receivers, i.e., Nk ≥ K − 1,

then there would be at least Nk − (K − 1) − 1 eigenvalues of M k that are zero. For the

eigenvectors corresponding to those eigenvalues, the eigenvalue equation is written as


ξkkhkkhH

kk +
∑

ℓ 6=k

−ξkℓhkℓh
H
kℓ


vi = 0, (3.36)
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holds for all i = K, . . . , Nk − 1. Then, for all ℓ ∈ K,

(
ξkℓhkℓh

H
kℓ

)
vi = 0, for all i = K, . . . , Nk − 1. (3.37)

The set of eigenvectors {v1, ..., vNk
} of Mk in (3.30), form an orthonormal set, i.e.

‖vi‖ = 1 for all i = 1, ..., Nk and vH
i vj = 0 for i 6= j. Therefore, we can write

∑Nk

ℓ=1 vℓv
H
ℓ = I, which gives

vNk
vH

Nk
= I −

Nk−1∑

ℓ=1

vℓv
H
ℓ

= I − GkGH
k = Π⊥

Gk
,

(3.38)

where Gk = [v1, ..., vNk−1]. Let the matrix Zk consist of the eigenvectors of Gk excluding

the eigenvectors that satisfy (3.37), i.e.,

Zk = [v1, . . . , vK−1], (3.39)

then for any g ∈ C
Nk in the space of the channels [hk1, . . . , hkK ] we can write

∣∣∣∣∣g
H Π⊥

Zk
hkℓ

‖Π⊥
Zk

hkℓ‖

∣∣∣∣∣

2

=

∣∣∣∣∣g
H Π⊥

Gk
hkℓ

‖Π⊥
Gk

hkℓ‖

∣∣∣∣∣

2

(3.40)

=

∣∣∣∣∣g
H

vNk
vH

Nk
hkℓ

‖vNk
vH

Nk
hkℓ‖

∣∣∣∣∣

2

(3.41)

= |gHvNk
|2, (3.42)

where ℓ ∈ K. Hence, the same power gains are achieved with the beamforming vectors
Π

⊥

Zk
hkℓ

‖Π
⊥

Zk
hkk‖ and vNk

used in (2.12) for the downlink channels [hk1, . . . , hkK].

3.3.2. Proof of Proposition 1

Considering an arbitrary player i in an arbitrary coalition S, we write the condition in

(3.21) as
|hH

kkwZF
k→S |2

σ2 +
∑

ℓ∈K\S |hH
ℓkwMRT

ℓ |2
≤ |hH

kkwZF
k→K|2

σ2
, (3.43)

where we used the signal-to-interference plus noise ratio (SINR) expression in (2.5)

knowing that the logarithm function is monotonically increasing in the SINR. Cross

multiplying the terms in (3.43) and solving for σ2 we get

σ2 ≤
∑

ℓ∈K\S |hH
ℓkwMRT

ℓ |2|hH
kkwZF

k→K|2

|hH
kkwZF

k→S |2 − |hH
kkwZF

k→K|2
, (3.44)

which is the condition that a player k in a coalition S prefers the grand coalition K
to S. Note that |hH

kkwZF
k→S |2 − |hH

kkwZF
k→K|2 in (3.44) is always positive because ZF

52



3.3. Proofs

beamforming nulls more spatial dimensions in K than in S ⊂ K. Since the condition in

(3.21) has to hold for all k ∈ S and all proper subsets S of K, we get the expression in

(3.22).
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Chapter 4.

Microeconomic Theory Applications

In this chapter, models from microeconomic theory are used to characterize equilibria

which are Pareto optimal in the two-user MISO IFC. In the first section of this chap-

ter, an exchange economy model between the links is studied. The parametrization of

the efficient beamforming vectors are regarded as goods which the links, referred to as

consumers, can exchange between themselves. The exchange equilibria are the possible

distribution of the goods at which the consumers are jointly satisfied. These equilibria

are Pareto optimal and dominate the Nash equilibrium of a strategic game between the

links (studied in Section 3.1.1). In order to reach an exchange equilibrium, we construct

a bargaining process between the two links which sequentially updates the amounts of

goods traded between the consumers. In the second section of this chapter, we use a

competitive market model which additionally associates prices to the goods. We char-

acterize the Walrasian equilibrium in this competitive market which is Pareto optimal

and lies in the set of exchange equilibria. In order to implement the Walrasian equi-

librium, a coordination mechanism is proposed which relies on communication between

the consumers and the arbitrator.

4.1. Exchange Economy

In this section, a model of voluntary exchange of goods between two consumers is

described. Each consumer is assumed to be initially endowed with amounts of divisible

goods. The consumers exchange the goods between themselves because this leads to joint

improvement in their utilities. We make the necessary transformation from the two-user

MISO IFC to a setting in which the links are the consumers, and the parameterized set

of efficient beamforming vectors are regarded as goods.
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good 1 good 2

λMRT
1

good 1 good 2

possession of consumer 1 possession of consumer 2

λMRT
2

Figure 4.1.: Illustration of the initial distribution of the two goods.

4.1.1. Model of Exchange

In the model of exchange proposed by Edgeworth in 1881 [Edg81], there exists a set

of consumers which voluntarily exchange goods they possess to jointly increase their

payoff. The set of consumers corresponds to the two MISO links in our setting. The

goods correspond to the parameters of the beamforming vectors in (2.9), restated here1

wk(λk) =
√

λk
Πhkℓ

hkk

‖Πhkℓ
hkk‖ +

√
1 − λk

Π⊥
hkℓ

hkk

‖Π⊥
hkℓ

hkk‖
, k 6= ℓ, (4.1)

where λk ∈ [0, λMRT
k ] with λMRT

k = ‖Πhkℓ
hkk‖2/‖hkk‖2. These beamforming vectors are

necessary to achieve all Pareto optimal points in the two-user rate region R in (2.6).

According to the parametrization of the efficient beamforming vectors in (4.1), there

are two goods and λ1 will stand for good 1 and λ2 for good 2. The consumers are

initially endowed with amounts of these goods. We will assume that the links start the

trade in Nash equilibrium. Thus, consumer k is initially endowed with λMRT
k from his

good and nothing from the good of the other consumer. Specifically, we define (λMRT
1 , 0)

and (0, λMRT
2 ) as the endowments of consumers 1 and 2, respectively. In Figure 4.1, the

initial endowments of the consumers are illustrated.

Since during exchange each consumer will possess different amounts from both avail-

able goods, we introduce new variables that indicate these. When consumer k trades an

amount of his good k to consumer ℓ 6= k, this amount will be represented by x
(ℓ)
k ≤ λMRT

k .

The amount left for consumer k from his good is x
(k)
k = λMRT

k − x
(ℓ)
k . In connection to

the parametrization in (4.1), we define the amounts of possessed goods as

x
(k)
k = λk, x

(k)
ℓ = λMRT

ℓ − λℓ, ℓ 6= k. (4.2)

If consumer k gives x
(ℓ)
k to the other consumer, this means that transmitter k uses the

beamforming vector in (4.1) which corresponds to λMRT
k − x

(ℓ)
k . Hence, if x

(ℓ)
k increases,

1Throughout this chapter, the indices k, ℓ are restricted to be in the set {1, 2}.
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good 1 good 2
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Figure 4.2.: Illustration of the distribution of the two goods during exchange.

transmitter k reduces the interference at receiver ℓ by using a beamforming vector nearer

to ZF. In Figure 4.2, the distribution of the goods during exchange is depicted.

Consumer Preference

The utility function of a consumer represents his preference over the goods. We use

the SINR expression in (2.4) as the utility function of a consumer k. Because consumer

preference is invariant to positive monotonic transforms [JR03, Theorem 1.2], the results

in this chapter hold for any SINR based utility function such as the achievable rate

function in (2.5). We define the two-user SINR region as

Φ :=
{

(γ1(w1, w2), γ2(w1, w2)) ∈ R
2
+ : ‖w1‖2 ≤ 1, ‖w2‖2 ≤ 1

}
, (4.3)

where the SINR γk of link k is defined in (2.4). Note that any SINR tuple which is Pareto

optimal corresponds to a Pareto optimal point in the rate region in (2.6). Since the set

of beamforming vectors in (4.1) are necessary to achieve all Pareto optimal points, we

express the SINR of a link k in terms of the parameters λk in (4.1). First, we formulate

the power gains at the receivers depending on the parameters.

Lemma 1. The power gains at the receivers in terms of the parametrization in (4.1)

are

|hH
kkwk(λk)|2 =

(√
λkgk +

√
(1 − λk)ǧk

)2

, (4.4)

|hH
kℓwk(λk)|2 = λkgkℓ, k 6= ℓ, (4.5)

where λk ∈ [0, λMRT

k ] and gk := ‖Πhkℓ
hkk‖2, ǧk := ‖Π⊥

hkℓ
hkk‖2, gkℓ := ‖hkℓ‖2, k 6= ℓ.

Proof. The proof is provided in Section 4.3.1.
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Figure 4.3.: Preference representation of the consumers. I1 and I2 are indifference curves

of consumer 1 and 2, respectively.

Notice in (4.5) that the interference gain λkgkℓ scales linearly with λk. With this

respect, increasing λk increases the interference at the unintended receiver. We rewrite

the SINR of a link k in terms of the goods as2

φk

(
x

(k)
1 , x

(k)
2

)
=

(√
x

(k)
k gk +

√(
1 − x

(k)
k

)
ǧk

)2

σ2 + λMRT
ℓ gℓk − x

(k)
ℓ gℓk

, (4.6)

where we substituted λk = x
(k)
k and λℓ = λMRT

ℓ − x
(k)
ℓ , ℓ 6= k, from (4.2). Next, we prove

an important property of the SINR function in (4.6) in relation to the goods.

Theorem 1. φk

(
x

(k)
1 , x

(k)
2

)
in (4.6) is continuous, strongly increasing, and strictly qua-

siconcave on [0, λMRT

1 ] × [0, λMRT

2 ].

Proof. The proof is provided in Section 4.3.2.

According to Theorem 1, the SINR φk

(
x

(k)
1 , x

(k)
2

)
is strongly increasing [JR03, Defini-

tion A1.17] means that for3
(
x′(k)

1 , x′(k)
2

)
≥
(
x

(k)
1 , x

(k)
2

)
and

(
x′(k)

1 , x′(k)
2

)
6=
(
x

(k)
1 , x

(k)
2

)
,

it holds that φk

(
x′(k)

1 , x′(k)
2

)
> φk

(
x

(k)
1 , x

(k)
2

)
. Moreover, the SINR φk

(
x

(k)
1 , x

(k)
2

)
is

strictly quasiconcave [JR03, Definition A1.25] means that for all
(
x′(k)

1 , x′(k)
2

)
6=
(
x

(k)
1 , x

(k)
2

)

and for all t ∈ (0, 1), the following holds

φk

(
t
(
x′(k)

1 , x′(k)
2

)
+ (1 − t)

(
x

(k)
1 , x

(k)
2

))
> min

{
φk

(
x′(k)

1 , x′(k)
2

)
, φk

(
x

(k)
1 , x

(k)
2

)}
. (4.7)

The properties in Theorem 1 imply that the SINR function has a unique maximum over

the set [0, λMRT
1 ] × [0, λMRT

2 ].

2We give a new notation for the SINR as φk because it depends on the goods while the SINR function

γk is a function of the beamforming vectors.
3The inequalities in the following are componentwise.
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The preference of consumers 1 and 2 over the goods is illustrated in Figure 4.3(a) and

Figure 4.3(b), respectively. For consumer 1 (analogously consumer 2), O1 is the origin

of the coordinate system which has x
(1)
1 , the amount of good 1, on the x-axis and x

(1)
2 ,

the amount of good 2, on the y-axis. Ik is the indifference curve of consumer k which

represents the pairs
(
x

(k)
1 , x

(k)
2

)
such that the consumer achieves the same utility as

with
(
x′(k)

1 , x′(k)
2

)
, i.e., φk

(
x

(k)
1 , x

(k)
2

)
= φ′

k := φk

(
x′(k)

1 , x′(k)
2

)
. The indifference curves

correspond to the boundaries of the level sets [BV04] of φk

(
x

(k)
1 , x

(k)
2

)
. According to the

properties of the utility function in Theorem 1, the indifference curves are convex. The

dark region above Ik, corresponds to the pairs
(
x

(k)
1 , x

(k)
2

)
where the consumer achieves

higher payoff than at the indifference curve. The region below Ik corresponds to less

payoff for consumer k.

We provide a formulation for the consumer indifference curves. This formulation is

essential for the bargaining process between the consumers later described in Section

4.1.3.

Proposition 3. The indifference curves Ik (x
(k)
k as a function of x

(k)
ℓ ), for given fixed

SINRs φ′
k are

I1

(
x

(1)
2 , φ′

1

)
= f


λMRT

1 ,
φ′

1

φ1

(
λMRT

1 , x
(1)
2

)


, (4.8)

I2

(
x

(2)
1 , φ′

2

)
= f


λMRT

2 ,
φ′

2

φ2

(
x

(2)
1 , λMRT

2

)


, (4.9)

where f(a, b) :=
(√

ab −
√

(1 − a)(1 − b)
)2

.

Proof. The proof is provided in Section 4.3.3.

Note that Proposition 3 characterizes a family of indifference curves. Each indifference

curve has a domain and range which depends on the fixed SINR value φ′
k. For given

fixed SINRs, the indifference curves should be restricted to take values in the feasible

parameter set from (4.1), i.e., I1

(
x

(1)
2 , φ′

1

)
∈ [0, λMRT

1 ] and I2

(
x

(2)
1 , φ′

2

)
∈ [0, λMRT

2 ].

The Edgeworth Box

The Edgeworth box [Edg81], [JR03, Chapter 5], illustrated in Figure 4.4, is a graphi-

cal representation that is useful for the analysis of an exchange economy. The box is

constructed by joining Figure 4.3(a) and Figure 4.3(b). Thus, the Edgeworth box has

two points of origin, O1 and O2, corresponding to consumer 1 and 2, respectively. The

initial endowments of the consumers define the size of the box. The width of the box is
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Figure 4.4.: An illustration of an Edgeworth box.

λMRT
1 , and the height is λMRT

2 . Let
(
x′(1)

1 , x′(1)
2

)
and

(
x′(2)

1 , x′(2)
2

)
be the possessions of

consumer 1 and consumer 2 during exchange. The point
((

x′(1)
1 , x′(1)

2

)
,
(
x′(2)

1 , x′(2)
2

))
is

the corresponding allocation in the Edgeworth box. Every allocation in the box is an

assignment of a possession vector to each consumer. The consumers’ preferences in the

Edgeworth box can be revealed according to their indifference curves. The dark region

in Figure 4.4 is called the exchange lens and contains all allocations that are Pareto

improvements to the outcome in
((

x′(1)
1 , x′(1)

2

)
,
(
x′(2)

1 , x′(2)
2

))
.

The locus of all Pareto optimal points in the Edgeworth box is called the contract curve

[Edg81]. On these points, the indifference curves are tangent, and are characterized by

the following condition4 [Edg81, MNS53]:

∂φ1

(
x

(1)
1 , x

(1)
2

)

∂x
(1)
1

∂φ2

(
x

(2)
1 , x

(2)
2

)

∂x
(2)
2

=
∂φ2

(
x

(2)
1 , x

(2)
2

)

∂x
(2)
1

∂φ1

(
x

(1)
1 , x

(1)
2

)

∂x
(1)
2

. (4.10)

The convexity of the consumers’ indifference curves according to Theorem 1 implies that

these can only be tangent at a single point. Thus, the condition in (4.10) is necessary

and sufficient for an allocation to be on the contract curve.

Theorem 2. The contract curve cc : [0, λMRT

2 ] → [0, λMRT

1 ] (x
(1)
1 as a function of x

(2)
2 ) is

a solution of the following cubic equation5

a
[
x

(1)
1

]3
+ b
[
x

(1)
1

]2
+ c
[
x

(1)
1

]
+ d = 0, (4.11)

4In multiple consumer settings, the condition provided by Edgeworth in (4.10) should hold for every

consumer pair.
5This result is independently obtained in [LKL11a].
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Figure 4.5.: Course of the contract curve in the Edgeworth box for different SNR values.

where

a = −(g1 + ǧ1)(C − g12)2, d = g1σ4, (4.12)

b = (C − g12)
(
2ǧ1(C + σ2) + g1(2σ2 + C − g12)

)
, (4.13)

c = −ǧ1(C + σ2)2 + σ2g1(2g12 − 2C − σ2), (4.14)

and C is a function of x
(2)
2 given as

C =

(√
x

(2)
2 g2 +

√
(1 − x

(2)
2 )ǧ2

)

(√
g2

x
(2)
2

−
√

ǧ2

1−x
(2)
2

)(
σ2

g21
+ λMRT

2 − x
(1)
2

) . (4.15)

The root of interest in (4.11) lies in [0, λMRT

1 ] and satisfies

sign
(
σ2/g12 + x

(1)
1 − Cx

(1)
1

)
= sign

(
σ2/g12 + x

(1)
1 + C(1 − x

(1)
1 )
)
. (4.16)

Proof. The proof is provided in Section 4.3.4.

The contract curve characterized in Theorem 2 are all allocations in the Edgeworth

box which are Pareto optimal in the SINR region. Thus, Theorem 2 provides all Pareto

optimal points in closed-form requiring a single real-valued parameter. In Figure 4.5, the

contract curve is plotted in the Edgeworth box for different SNR values. The number

of antennas at the transmitters is two and we generate sample channel vectors. The

contract curve is calculated by taking 103 samples of x
(2)
2 uniformly spaced in (0, λMRT

2 )

to obtain values of x
(1)
1 . The course of the contract curve for 10 dB SNR is near to the

edge of the Edgeworth box where joint ZF is marked. This means that Pareto optimal
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Figure 4.6.: An illustration of the exchange equilibria in the Edgeworth box.

allocations require either transmitter to choose beamforming vectors near to ZF. For

decreasing SNR, the contract curve moves away from the ZF edge. For low SNR, the

contract curve is then close to the edge with joint MRT. These observations conform

with the analysis in [LJ08] where maximum sum rate transmission is studied in low and

high SNR regimes.

4.1.2. Exchange Equilibria

According to Edgeworth [Edg81], the outcome of an exchange between the consumers

must lie on the contract curve. The set of outcomes at which exchange would settle are

called exchange equilibria and are illustrated in Figure 4.6. The exchange equilibria are

the set of allocations on the contract curve which are bounded by the indifference curves

corresponding to the initial endowments. That is, the exchange equilibria allocations

correspond to all Pareto optimal points which dominate the Nash equilibrium in the

SINR region. With the initial endowments corresponding to the Nash equilibrium, the

corresponding indifference curves can be calculated from Proposition 3. The bounds for

the exchange equilibria, as illustrated in Figure 4.6, can be calculated as the intersection

of the indifference curves starting at the allocations in Nash equilibrium and the contract

curve characterized in Theorem 2.

Relation to the Core

The solution concept by Edgeworth is related to that of coalitional games called the

core [Shu61]. The exchange economy between the two links can be represented as a

coalitional game without transferable payoff [OR94, Chapter 13.5]. A game in coalitional
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Figure 4.7.: An illustration of the exchange equilibria in the SINR region.

form [OR94, Definition 268.2] between the two links is defined by the tuple

〈K, G, V, (φk)k∈K〉. (4.17)

In (4.17), K = {1, 2} is the set of players which consists of the two links. G is called the

set of consequences defined as

G =
{((

x
(1)
1 , x

(1)
2

)
,
(
x

(2)
1 , x

(2)
2

))
:
(
x

(k)
1 , x

(k)
2

)
∈ [0, λMRT

1 ] × [0, λMRT
2 ]

}
. (4.18)

The mapping V assigns to every coalition S (a nonempty subset of K) a set V (S) ⊆ G,

such that

• V ({1}) = V ({2}) = ((λMRT
1 , 0), (0, λMRT

2 )),

• V ({1, 2}) =
{((

x
(1)
1 , x

(1)
2

)
,
(
x

(2)
1 , x

(2)
2

))
∈ G : x

(1)
k + x

(2)
k = λMRT

k

}
,

and φk is the SINR of player k in (4.6).

The core [OR94, Definition 268.3] of the coalitional game in (4.17) is the set of all

allocations
((

x
(1)
1 , x

(1)
2

)
,
(
x

(2)
1 , x

(2)
2

))
∈ V (K) for which there exists no coalition S ⊆

K and an allocation
((

x′(1)
1 , x′(1)

2

)
,
(
x′(2)

1 , x′(2)
2

))
∈ V (S) for which φk

(
x′(k)

1 , x′(k)
2

)
>

φk

(
x′(k)

1 , x′(k)
2

)
for all k ∈ S. Therefore, the core consists of the allocations which lead

to points on the Pareto boundary of the SINR region and dominate the Nash equilibrium.

Consequently, the core of a coalitional game between the links is the set of exchange

equilibria. The exchange equilibria in the SINR region are illustrated in Figure 4.7.

4.1.3. Bargaining

In this section, we propose a bargaining process between the consumers. The consumers

iteratively exchange amounts of goods within themselves until they reach an exchange

63



Chapter 4. Microeconomic Theory Applications

equilibrium. The bargaining process requires that the consumers be able to communicate

directly with each other and exchange signaling bits. Updating the amounts of goods at

each consumer as well as specifying the signals between the consumers is done by using

the Edgeworth box representation. We systematically study all achievable allocations in

the Edgeworth box taking into account the possible signaling between the transmitters.

Moreover, we take into account that each consumer can only update the distribution of

its own good. That is, each link can only change its own beamforming parameters.

Multistage Bargaining

The bargaining process is sequential and is divided into bargaining-steps. At each

bargaining-step, each consumer chooses an amount of his good to propose to the other

consumer. At a bargaining-step t, consumer 1 proposes x
(2)(t)
1 to consumer 2, and con-

sumer 2 proposes x
(1)(t)
2 to consumer 1. In addition, the consumers exchange messages

in order to calculate the proposals in the next bargaining-step. The possession of con-

sumer 1 at a bargaining-step t is
(
x

(1)(t)
1 , x

(1)(t)
2

)
, where x

(1)(t)
1 is the amount of his good

and x
(1)(t)
2 is the amount of good from consumer 2. Similarly,

(
x

(2)(t)
1 , x

(2)(t)
2

)
is the pos-

session of consumer 2 at bargaining-step t. We denote an allocation in the Edgeworth

box at a bargaining-step t as

x(t) :=
((

x
(1)(t)
1 , x

(1)(t)
2

)
,
(
x

(2)(t)
1 , x

(2)(t)
2

))
. (4.19)

Recall that each allocation in the Edgeworth box is a distribution of the goods which

corresponds to a beamforming vector for each transmitter in the parameterized set in

(4.1).

The bargaining process is structured in stages. A bargaining-stage, indexed with s,

can span several bargaining-steps as illustrated in Figure 4.8. If at a bargaining-step

t, t > s, a Pareto improvement is achieved to the SINRs in the current bargaining-

stage, then we set s = t. This means that a new bargaining-stage begins each time a

Pareto improvement is achieved. At each bargaining-step, the consumers compare their

outcomes to their current stage outcome (corresponding to bargaining-step s). In the

first stage, s = 0, the possessions of the consumers correspond to the Nash equilibrium.

Next, we describe how the consumers choose their proposals at each bargaining-step

and also what messages are they to signal to each other.

Bargaining Process

We assume that each consumer k knows his SINR φk

(
x

(k)(t)
1 , x

(k)(t)
2

)
at bargaining-step

t as well as his SINR φk

(
x

(k)(s)
1 , x

(k)(s)
2

)
for the current stage s. We define the following
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Pareto improvement

bargaining-stage

s s st t + 1

Figure 4.8.: An illustration of the bargaining steps and stages during the bargaining

process.

capabilities for each consumer:

• consumer k keeps track of a step-length δ
(t)
k < λMRT

k at each bargaining-step t.

The step-length is required in order to increment or decrement the amount of

good proposed to the other consumer. The initial value of the step-length is set

prior to the bargaining process as δ
(0)
k < λMRT

k .

• consumer k can change the sign of the step-length δ
(t)
k and also reduce its length

by multiplying it with θk ∈ (0, 1).

• consumer k can choose three types of proposals to consumer ℓ, ℓ 6= k, at bargaining-

step t + 1. These are:

(I) x
(ℓ)(t+1)
k = x

(ℓ)(t)
k

(II) x
(ℓ)(t+1)
k = x

(ℓ)(t)
k + δ

(t+1)
k

(III) x
(ℓ)(t+1)
k = λMRT

k − Ik

(
x

(k)(t)
ℓ , φk

(
x

(k)(s)
1 , x

(k)(s)
2

))

Proposal type (I) does not change the amount of good k proposed to consumer

ℓ 6= k from the previous bargaining-step. Proposal type (II) increases or decreases

the proposed amount of good k depending on the sign of δ
(t+1)
k . Proposal type

(III) achieves for consumer k the same SINR value as his current stage outcome

φk

(
x

(k)(s)
1 , x

(k)(s)
2

)
when consumer ℓ proposes x

(k)(t)
ℓ . The indifference curve func-

tion Ik is defined in Proposition 3.

• consumer k sets Γℓ = true if consumer ℓ, ℓ 6= k, chooses proposal type (III) at the

current bargaining-step. Otherwise, consumer k sets Γℓ = false unless he also

chooses proposal type (III).

In Figure 4.9, six Edgeworth boxes are illustrated. In all boxes, the indifference curves

correspond to the stage allocation x(s). The marked regions in Figure 4.9 resemble the

regions where the allocations x(t), t > s, are possible with respect to the indifference

curves. Note that all regions in the Edgeworth box are covered in the cases in Figure 4.9,
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Figure 4.9.: Six Edgeworth boxes which illustrate the possible positions of the allocation

x(t) of a bargaining-step.

hence all possible positions of x(t) are treated. These cases will aid in the description

of our bargaining process.

Each consumer k can signal to the other consumer one of four signals. This requires

two bits of information to be sent to the other transmitter at each bargaining-step. The

four types of signals are:

• Accept (Ak): A consumer k signals Ak to the other consumer if his SINR has

increased in the current bargaining-step.

• Reject (Rk): A consumer k signals Rk to the other consumer if his SINR has

decreased in the current bargaining-step.

• Not Possible (Nk): A consumer k signals Nk to the other consumer if it is not

possible for consumer k to find a proposal which gives him the same SINR as the

stage SINR.
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• Back (Bk): A consumer k signals Bk to the other consumer if he detects that

the sign of the step-length has to be changed. In this case, if the consumers

previously where incrementing their proposals, after signaling Bk they would start

decrementing their proposals in the next bargaining-steps.

The choice of consumer 1’s proposal (analogously consumer 2) is described in the

flowchart in Figure 4.13. In Figure 4.13, consumer 1 chooses the signaling to consumer

2 based on conditions D1, D2, and D3 (analogously for consumer 2). Condition D1

is true if the current step-length δ
(t)
1 is below an accuracy measure ǫ. If consumer k

signals Bk, then all consumers alter their initial step-length as δ
(0)
k = −θkδ

(0)
k and set

δ
(t+1)
k = δ

(0)
k . The new proposals are of type (II). This adaptation is necessary since x(t)

can be in the opposite direction to the exchange lens (proposals in the regions marked

with a prime in Figure 4.9 (E 4)-(E 6)). Since δ
(t)
1 and δ

(t)
2 always have the same sign,

x(t) will never be in the marked regions in Figure 4.9 (E 1).

Condition D2 is true if consumer 1 achieves an improvement in his payoff. Thus,

consumer 1 accepts the proposal by signaling A1 to consumer 2. Now, consumer 1’s

proposal depends on the signal from consumer 2: If consumer 2 signals A2, then the

allocation x(t) is necessarily in the exchange lens in Figure 4.9 (E 2), i.e., a Pareto

improvement from the stage allocation is achieved. The new stage allocation is set

as x(s) = x(t) and both consumers choose proposal type (II) without altering the step-

lengths. If consumer 2 signals R2, then x(t) is in region (a) in Figure 4.9 (E 3). Consumer

2 chooses proposal type (III) and consumer 1 chooses proposal type (I). This adaptation

is illustrated in Figure 4.9 (E 3) as projecting the allocation x(t) onto I2. Consumer 1

then sets Γ2 = true. If consumer 2 signals N2, then x(t) is in region (a’) in Figure 4.9

(E 6) and above I1. Both consumers then choose proposal type (II) which makes x(t+1)

closer to x(s) than x(t).

Condition D3 is true if consumer 1 cannot find x
(2)(t+1)
1 , given x

(1)(t)
2 , to achieve

the SINR φ1

(
x

(1)(s)
1 , x

(1)(s)
2

)
of the current stage. Having that consumer 1 can choose

the proposals x
(2)(t+1)
1 ∈ [0, λMRT

k ], then φ1

(
x

(1)(s)
1 , x

(1)(s)
2

)
is feasible if it is in the set

F1

(
x

(1)(t)
2

)
defined as

F1

(
x

(1)(t)
2

)
:=
[
φ1

(
0, x

(1)(t)
2

)
, φ1

(
λMRT

1 , x
(1)(t)
2

)]
. (4.20)

Similarly for consumer 2, we define the set

F2

(
x

(2)(t)
1

)
:=
[
φ2

(
x

(2)(t)
1 , 0

)
, φ2

(
x

(2)(t)
1 , λMRT

2

)]
. (4.21)

The above defined sets determine whether it is feasible to find a beamforming vector for

a transmitter which achieves an SINR equal to the bargaining stage outcome. This case

67



Chapter 4. Microeconomic Theory Applications

occurs if x(t) is in the region marked in Figure 4.9 (E 6), where x(t) cannot be projected

onto I1 for constant x
(2)(t)
1 . Condition D3 is also true if Γ2 is true, i.e., consumer 2

has chosen proposal type (III) in the previous step. This case reveals that the previous

allocation x(t−1) has been in any of the marked regions in Figure 4.9 (E 4). Each

consumer chooses proposal types (II) after reducing their step-lengths. Hence, x(t+1)

will be closer to x(s). If D3 is false, consumer 1 chooses his proposal according to the

signal from consumer 2: If consumer 2 signals (A2), then this case is analogous to the

case described before when consumer 1 signals A1 and consumer 2 R2. If consumer

2 signals (R2), then x(t) can only be in regions (a) or (a’) in Figure 4.9 (E 5). Both

consumers use proposal types (II) after reducing their step-lengths.

The bargaining process terminates when |δ(0)
1 | < ǫ or |δ(0)

2 | < ǫ. The initial step-length

δ
(0)
k is reduced each time Bk is signaled, i.e., when |δ(t)

k | < ǫ. The step-length of at least

one consumer is reduced in each bargaining-step, except when Pareto improvements are

achieved. Pareto improvements lead to a reduction in the size of the exchange lens. The

exchange lens vanishes when the indifference curves are tangent, i.e., the allocation is

on the contract curve. Therefore, the bargaining process converges after a finite number

of steps to an outcome arbitrarily close to the contract curve. In the SINR region, the

bargaining outcome is then arbitrarily close to an exchange equilibrium on the Pareto

boundary.

Simulation Results

In Figure 4.10, the Pareto boundary of an SINR region for sample channel realizations

is plotted using the set of efficient beamforming vectors in (4.1) (100 samples are taken

uniformly in [0, λMRT
k ]). Joint ZF and the Nash equilibrium (joint MRT) outcomes

are plotted. The Nash equilibrium is the starting point for our bargaining process.

Three different bargaining outcomes achieved by our bargaining process are marked

with squares. The bargaining trajectories from the Nash equilibrium to these outcomes

corresponds to the stages during the bargaining process. The bargaining outcome cannot

be determined prior to the bargaining process and depends on the initializing parameters

such as the initial step-lengths δ
(0)
k and θk. The bargaining outcomes always dominate

the Nash equilibrium, e.g. BO1, BO2, and BO3. The dashed line connecting joint

MRT and joint ZF points is the trajectory curve of the bargaining algorithm proposed

in [HG08]. In this algorithm both consumers start at the Nash equilibrium (or joint

ZF) and reduce their proposals in equal step-lengths. The algorithm terminates when

at least one link experiences reduction in its payoff. The outcome of this algorithm

starting in Nash equilibrium is marked with a circle.
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Figure 4.10.: SINR region of a two-user MISO IFC with SNR = 0 dB. The bargaining

outcomes are marked with squares for three different initial step-lengths

(δ(0)
1 , δ

(0)
2 ). BO1 : (0.02, 0.01), BO2 : (0.015, 0.01), BO3 : (0.01, 0.01).

In Figure 4.11, an Edgeworth box is plotted for the bargaining process in which

the step-lengths are initialized with (δ0
1 , δ0

2) = (0.1, 0.1) and the accuracy measure is

ǫ = 10−5. The stage allocations are marked with crosses, and the exchange lens is

bounded by the corresponding indifference curves. The exchange lens reduces in size

after each bargaining-stage until the indifference curves are tangent at the bargaining

outcome. This indicates that the outcome is Pareto optimal. In Figure 4.12, the SINR

values for the same setting as of Figure 4.11 are plotted for increasing bargaining-

steps. The stage outcomes are marked with circles. These are the SINR pairs that

the consumers jointly accept during the bargaining process. The algorithm terminates

after 40 bargaining-steps. However, since the SINRs only increase slightly after half

the bargaining-steps, the bargaining process could be stopped at bargaining-step 20

requiring a total of 80 signaling bits.
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Figure 4.13.: Flowchart for consumer 1 (analogously consumer 2) for a new proposal.
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4.2. Competitive Markets

In this section, we model the situation between two MISO links as a competitive market.

The stable state of a competitive market is called Walrasian equilibrium and lies in the

set of exchange equilibria characterized in the previous section. We continue to interpret

the efficient beamforming parameters as goods in this section. However, opposed to the

previous section where the goods where directly exchanged between the consumers, the

goods in a competitive market are bought and sold by the consumers at given prices.

4.2.1. Competitive Market Model

In a competitive market, the consumers buy quantities of goods and also sell goods they

possess such that they maximize their profit. Each good has a price and every consumer

takes the prices as given. The prices of the goods are not determined by consumers, but

arbitrated by markets. In our case, the arbitrator determines the prices of the goods.

The goods in (4.2) correspond to the parameterizations of the efficient beamforming

vectors. Let pk denote the unit price of good k. In order to be able to buy goods, each

consumer k is endowed with a budget λMRT
k pk which is the worth of his initial amounts

of goods6. The budget set of consumer k is the set of bundles of goods he can afford to

buy defined as

Bk :=
{(

x
(k)
1 , x

(k)
2

)
∈ R

2
+ : x

(k)
1 p1 + x

(k)
2 p2 ≤ λMRT

k pk

}
. (4.22)

The budget set of consumer 1 is illustrated by the grey area in Figure 4.14. The boundary

of the budget set is a line which connects the points (λMRT
1 , 0) and (0, λMRT

1 p1/p2). Thus,

the boundary has a slope of −p1/p2.

For the consumers, the prices of the goods are measures for their qualitative valuation.

If p1 is greater than p2, then good 1 has more value than good 2. Given the prices p1 and

p2, consumer 1 demands the amounts of goods x
(1)
1 and x

(1)
2 such that these maximize

his SINR utility function in (4.6). Thus, consumer k solves the following problem:

maximize φk

(
x

(k)
1 , x

(k)
2

)

subject to p1x
(k)
1 + p2x

(k)
2 ≤ λMRT

k pk.
(4.23)

In the above consumer problem, the objective function is the SINR of link k in (4.6),

and the constraint is defined by the budget set of consumer k in (4.22). The physical

interpretation of the budget set constraint can be related to an interference constraint.

6This case corresponds to the Arrow-Debreu market model [Ye07].
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Figure 4.14.: An illustration of the budget set of consumer 1.

Considering consumer 1, the constraint in (4.23) can be reformulated to

x
(1)
1 ≤ λMRT

1 − p2

p1
x

(1)
2 , (4.24)

where, as mentioned before, x
(1)
1 = λ1 ∈ [0, λMRT

1 ] is the scaling of interference transmit-

ter 1 produces at receiver 2. Analogously, x
(1)
2 = λMRT

2 −λ2 is the scaling for interference

reduction from transmitter 2 at receiver 1. Hence, the constraint in (4.24) dictates the

tradeoff between the amount of interference transmitter 1 can generate at receiver 2

and the amount of interference receiver 1 is to tolerate. The prices p1 and p2 can be

interpreted as parameters to control the fairness between the links by regulating the

amount of interference the links generate on each other.

Theorem 3. The unique solution to the problem in (4.23) is

x
∗(1)
1 (p1, p2) =


1 +

ǧ1

g1

(
1 +

g21
p1

p2

σ2 + λMRT

2 g21 − λMRT

1 g21
p1
p2

)2



−1

, (4.25)

x
∗(1)
2 (p1, p2) =

p1

p2

(
λMRT

1 − x
∗(1)
1

)
, (4.26)

for consumer 1, and

x
∗(2)
2 (p1, p2) =


1 +

ǧ2

g2

(
1 +

g12
p2
p1

σ2 + λMRT

1 g12 − λMRT

2 g12
p2

p1

)2



−1

, (4.27)

x
∗(2)
1 (p1, p2) =

p2

p1

(
λMRT

2 − x
∗(2)
2

)
, (4.28)

for consumer 2, where ǧk, gk, gkℓ are defined in Lemma 1. The feasible prices ratio is in

the range:

β :=
λMRT

2 g12

σ2 + λMRT

1 g12
≤ p1

p2
≤ β :=

σ2 + λMRT

2 g21

λMRT

1 g21
. (4.29)
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Proof. The proof is provided in Appendix 4.3.5.

Theorem 3 characterizes the demand functions of each consumer. In economic theory,

these functions are called Marshallian demand functions [JR03] or Walrasian demand

functions [MCWG95]. Note that each consumer calculates his demands independently

without knowing the other consumer’s demands. From Theorem 3, consumer 1 (analo-

gously consumer 2) needs to know the constants g1, ǧ1, and g21 defined in Lemma 1. The

measure σ2 + λMRT
2 g21 in (4.6) is the noise plus interference power in Nash equilibrium.

This measure is reported from receiver 1 to its transmitter in Nash equilibrium which

is the links’ initial state before coordination takes place.

The demand functions of the consumers in Theorem 3 are homogenous of degree zero

[JR03, Definition A2.2] with the prices p1 and p2. That is, the demand of consumer 1

for good 1 (analogously consumer 2 for good 2) satisfies x
∗(1)
1 (tp1, tp2) = x

∗(1)
1 (p1, p2) for

t > 0. Hence, given only a prices ratio p̄1/p̄2, we can calculate a prices pair as p1 = p̄1/p̄2

and p2 = 1 which leads to the same demand as with p̄1 and p̄2. With this respect, a

consumer need only know the prices ratio p1/p2 from the arbitrator to calculate his

demands. In Figure 4.14, the demand of consumer 1 is illustrated as the point where

the corresponding indifference curve is tangent to the boundary of the budget set.

The next result provides a significant property that the goods in our setting possess.

Later in Section 4.2.2 and Section 4.2.3, this property is required to prove the uniqueness

of the Walrasian equilibrium and also to guarantee the global convergence of the price

adjustment process.

Lemma 2. The goods in our setting are gross substitutes, i.e., increasing the price of

one good increases the demand of the other good.

Proof. Decreasing the ratio p1/p2 can be interpreted as decreasing p1 or increasing p2.

Consider the aggregate excess demand of good 1 defined as

z1(p1, p2) = x
∗(1)
1 (p1, p2) + x

∗(2)
1 (p1, p2) − λMRT

1 , (4.30)

where x
∗(1)
1 (p1, p2) and x

∗(2)
1 (p1, p2) are the demand functions of good 1 in (4.25) and

(4.28) from Theorem 3. If p1/p2 decreases, then x
∗(1)
1 (p1, p2) increases. If p1/p2 de-

creases, then x
∗(2)
1 (p1, p2) also increases since p2/p1 increases and x

∗(2)
2 (p1, p2) decreases.

Thus, the aggregate excess demand of good 1 in (4.30) increases if p1/p2 decreases. The

analysis is analogous for the second good.

If each consumer is to demand amounts of goods without considering the demands

of the other consumer, then it is important that the consumers’ demands equal the
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Figure 4.15.: An illustration of an Edgeworth box. I1 and I2 are indifference curves of

consumer 1 and 2 respectively. The line with slope -p∗
1/p∗

2 separates the

budget sets of the consumers in Walrasian equilibrium.

consumers’ supply of goods. Prices which fulfill this requirement are called Walrasian

and are calculated next.

4.2.2. Walrasian Equilibrium

In a Walrasian equilibrium, the demand equals the supply of each good [JR03, Definition

5.5]. According to the properties of the utility function in Theorem 1, there exists at

least one Walrasian equilibrium [JR03, Theorem 5.5]. The Walrasian prices (p∗
1, p∗

2) that

lead to a Walrasian equilibrium satisfy

x
∗(1)
1 (p1, p2) + x

∗(2)
1 (p1, p2) = λMRT

1 , (4.31)

and x
∗(1)
2 (p1, p2) + x

∗(2)
2 (p1, p2) = λMRT

2 . (4.32)

In our setting in which only two goods exist, Walras’ law [JR03, Chapter 5.2] provides

the property that if the demand equals the supply of one good, then the demand would

equal the supply of the other good. Hence, in order to calculate the Walrasian prices,

it is sufficient to consider only one of the conditions in (4.31) and (4.32).

Theorem 4. The ratio of the Walrasian prices is the unique root of

a

[
p1

p2

]5

+ b

[
p1

p2

]4

+ c

[
p1

p2

]3

+ d

[
p1

p2

]2

+ e

[
p1

p2

]
+ f = 0, (4.33)
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that satisfies the condition in (4.29). The constant coefficients are

a = T1T 2
2 T 3, b = −2T3T2(T2S2 + T1S1),

c = 2T4T2S3 + 4S1S2T2T3 + T1S4T3,

d = −2S4S2T3 − 4T1T2S2S3 − S1T4S3,

e = 2S3S2(T2S2 + T1S1), f = −S1S2
2S3,

where

T1 = (g1 − ǧ1)/(g1 + ǧ1), T2 = λMRT

1 + σ2/g12,

T3 = (1 − λMRT

1 )λMRT

1 , T4 =
(
ǧ2

1 − ǧ1g1 + g2
1

)
/(g1 + ǧ1)2,

S1 = (g2 − ǧ2)/(g2 + ǧ2), S2 = λMRT

2 + σ2/g21,

S3 = (1 − λMRT

2 )λMRT

2 , S4 =
(
ǧ2

2 − ǧ2g2 + g2
2

)
/(g2 + ǧ2)2,

and ǧk, gk, gkℓ are defined in Lemma 1.

Proof. Substituting (4.25) and (4.28) in (4.31) and collecting p1/p2 we get the expression

in (4.33). The condition in (4.29) states the set of feasible prices such that the demands

of the consumers are feasible. At least one price pair is in this set since a Walrasian

equilibrium always exists in our setting. In addition, having the property that the goods

are gross substitutes in Lemma 2, implies that the Walrasian equilibrium in our setting

is unique [MCWG95, Proposition 17.F.3]. Note that the roots in (4.33) can be easily

calculated using a Newton method. And due to the uniqueness of the Walrasian prices,

only one root satisfies the condition in (4.29).

According to the First Welfare Theorem [JR03, Theorem 5.7], the Walrasian equi-

librium is Pareto optimal. Moreover, linking to the results in the previous section, the

Walrasian equilibrium is an exchange equilibrium [JR03, Theorem 5.6]. In other words,

the Walrasian equilibrium dominates the Nash equilibrium outcome. In Figure 4.15,

the allocation in Walrasian equilibrium which corresponds to the Walrasian prices ratio

p∗
1/p∗

2 is illustrated in the Edgeworth box. It is the point on the contract curve which

intersects the line that passes through the endowment point (Nash equilibrium) with

slope −p∗
1/p∗

2 (with respect to the coordinate system of consumer 1). The grey area

in Figure 4.15 is the budget set of consumer 1 as described in Figure 4.14. The white

area in the Edgeworth box is the budget set of consumer 2. According to the axis

transformation in constructing the Edgeworth box, the boundaries of the consumers’

budget sets coincide. The indifference curves of the consumers are tangent to this line

and also tangent to one another which illustrates the Pareto optimality of the Walrasian

equilibrium.
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Figure 4.16.: An illustration of the Kalai-Smorodinsky and Nash bargaining solutions

in the SINR region.

Relation to Axiomatic Bargaining

Two solutions from axiomatic bargaining theory, namely the Nash bargaining solution

(NBS) [Nas50a] and the Kalai-Smorodinsky (KS) solution [KS75] are also exchange

equilibria. These solutions differ by the axioms that define them. The interested reader

is referred to [Pet92] for a comprehensive theory on axiomatic bargaining. A bargaining

problem is defined by7 〈Φ, (φNE
1 , φNE

2 )〉, where Φ is the SINR region in (4.3) and (φNE
1 , φNE

2 )

is called the threat point which corresponds to the SINR tuple in Nash equilibrium. The

threat point is a state reached if cooperation between the players does not succeed.

The NBS [OR94, Chapter 15] of 〈Φ, (φNE
1 , φNE

2 )〉 solves the following problem:

maximize (φ1 − φNE
1 )(φ2 − φNE

2 )

subject to (φ1, φ2) ∈ Φ.
(4.34)

In [LJ08], the NBS solution is selected as a cooperative solution between the two MISO

links. The solution is found graphically by checking the intersection of the Pareto

boundary and the Nash curves. A Nash curve is a set of SINR tuples that satisfy

c = (φ1 − φNE
1 )(φ2 − φNE

2 ) (4.35)

for a given constant value c. The NBS is the SINR tuple at which the Nash curve touches

the boundary of the SINR region at a single point as is illustrated in Figure 4.16. Note

7In order to simplify the description of the bargaining solutions, we do not explicitly state the depen-

dence of the utility functions on the goods.
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that the NBS is only defined for convex utility regions which ensures a unique solution.

The SINR region Φ in our case is not necessarily convex and therefore multiple solutions

can exist for the problem in (4.34).

The KS solution of the bargaining problem 〈Φ, (φNE
1 , φNE

2 )〉 solves the following problem

[KS75]:

maximize min
(

φ1 − φNE
1

φUP
1 − φNE

1

,
φ2 − φNE

2

φUP
2 − φNE

2

)

subject to (φ1, φ2) ∈ Φ,

(4.36)

where φUP
1 (analogously φUP

2 ) is the solution of the following problem:

maximize φ1

subject to (φ1, φNE
2 ) ∈ Φ.

(4.37)

The point (φUP
1 , φUP

2 ) is called the utopia point. As illustrated in Figure 4.16, the two

Pareto optimal points (φUP
1 , φNE

2 ) and (φNE
2 , φUP

2 ) are the bounds to the set of exchange

equilibria from Section 4.1.2. Graphically, the KS solution is the intersection of the

Pareto boundary with the line connecting the Nash equilibrium and the utopia point.

In [NS09], the KS solution is found in the MISO IFC by solving a set of convex feasibility

problems.

The properties that the Walrasian equilibrium and the NBS or KS solution have in

common are that they are exchange equilibria, i.e., each user achieves higher utility than

at the Nash equilibrium. The difference between the solutions is the fairness aspects

in allocating the Pareto optimal utilities to the players. The current advantage in the

Walrasian equilibrium over NBS and KS solutions is that it can be characterized in

closed-form using Theorem 3 and Theorem 4. In addition, in the next section we devise

two coordination mechanism to implement the Walrasian equilibrium.

4.2.3. Coordination Mechanism

In this section, we provide two coordination mechanisms which require different amount

of information at the arbitrator. If the arbitrator has full knowledge of all parameters

of the setting, then he can calculate the Walrasian prices from Theorem 4 and forward

these to the transmitters. The transmitters calculate their demands from Theorem

3 and choose the beamforming vectors accordingly. This mechanism that uses the

results in Theorem 3 and Theorem 4 leads directly to the Walrasian equilibrium. In

Table 4.1, the required information at the arbitrator and the transmitters to implement

this one-shot mechanism are listed. We assume that each transmitter forwards the
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Information

Arbitrator h11, h12, h21, h22, σ2

Transmitter 1 h11, h12, σ2 + λMRT
2 ‖h21‖2, ‖h21‖2

Transmitter 2 h22, h21, σ2 + λMRT
1 ‖h12‖2, ‖h12‖2

Table 4.1.: Required information at the arbitrator and transmitters to implement the

Walrassian equilibrium in one-shot.

Information

Arbitrator ‖h21‖2, ‖h12‖2, λMRT
1 , λMRT

2 , σ2

Transmitter 1 h11, h12, σ2 + λMRT
2 ‖h21‖2, ‖h21‖2

Transmitter 2 h22, h21, σ2 + λMRT
1 ‖h12‖2, ‖h12‖2

Table 4.2.: Required information at the arbitrator and transmitters for the price adjust-

ment process.

channel information it has to the arbitrator. Note that each transmitter k initially

knows the channel vectors hkk and hkℓ, k 6= ℓ, which are required to calculate the efficient

beamforming vectors in (2.9). Also, transmitter k knows the sum σ2+λMRT
ℓ ‖hℓk‖2, k 6= ℓ,

since this is the noise plus interference in Nash equilibrium forwarded through feedback

from the intended receiver. The arbitrator, which now has full knowledge of all channels,

can then forward the missing information on the channel gain ‖hℓk‖2 to a transmitter

k.

If the arbitrator has limited information about the setting, we could still achieve

the Walrasian prices through an iterative price adjustment process. For fixed arbitrary

initial prices, the transmitters can calculate their demands and forward these to the

arbitrator. The arbitrator exploits the demand information to update the prices of the

goods. Specifically, the arbitrator would increase the price of the good which has higher

demand than its supply. Due to the properties of the goods in Lemma 2, this price ad-

justment process, also called tâtonnement, is globally convergent to the Walrasian prices

given in Theorem 4 [ABH59]. The price adjustment process requires the information

listed in Table 4.2 to be available at the arbitrator and the transmitters. In contrast to

Table 4.1, the arbitrator requires aside from the noise power σ2 only the cross channel

gains ‖h21‖2, ‖h12‖2 and the parameters λMRT
1 , λMRT

2 from the transmitters. This infor-

mation is required only at the beginning of the price adjustment process in order to

calculate the bounds for the feasible prices β and β given in (4.29).

In Algorithm 1, the price adjustment process is described. This process is essentially
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Algorithm 1: Distributed price adjustment process.

Input: x
(1)
1 , x

(2)
1 , x

(1)
2 , x

(2)
2

1 initialize: accuracy ǫ, n = 0, β
(0)

= β, β(0) = β in (4.29),
p

(0)
1

p
(0)
2

= β
(0)

2 +
β(0)

2 ;

2 while β
(n) − β(n) > ǫ do

3 receive demands x
(1)
1 , x

(2)
1 , x

(1)
2 , x

(2)
2 ;

4 n = n + 1;

5 if x
(1)
1 + x

(2)
1 > λMRT

1 then

6 β(n) =
p

(n−1)
1

p
(n−1)
2

, β
(n)

= β
(n−1)

;

7
p

(n)
1

p
(n)
2

=
β

(n)
+β(n)

2 ;

8 else

9 β(n) = β(n−1), β
(n)

=
p

(n−1)
1

p
(n−1)
2

;

10
p

(n)
1

p
(n)
2

=
β

(n)
+β(n)

2 ;

Output: p
(n)
1 /p

(n)
2

a bisection method which finds the roots of the excess demand function described in the

proof of Lemma 2. The accuracy measure conditioning the termination of the algorithm

is defined as ǫ. The terms β and β are the lower and upper bounds on the prices

ratio given in (4.29), respectively. The prices ratio is initialized to the middle value

of these bounds and forwarded to the links. The links send their demands calculated

from Theorem 3 to the arbitrator. If the demand of good 1 is greater than its supply,

then the arbitrator increases the ratio of the prices to half the distance to the upper

bound β. Thus, the price of good 1 relative to the price of good 2 increases. The lower

bound on the prices ratio β is updated to the prices ratio of the previous iteration. If

the demand of good 1 is less than its supply, the prices ratio is decremented half the

distance to the lower bound β. The upper bound β is set to the prices ratio of the

previous iteration. The algorithm terminates when the distance between the updated

upper and lower bounds on the prices ratio is below the accuracy measure ǫ.

In Figure 4.17, the prices ratio in the price adjustment process is marked with a

cross and is shown to converge after a few iterations to the Walrasian prices ratio from

Theorem 4. The dashed lines correspond to the upper and lower bounds in (4.29).
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Figure 4.18.: Edgeworth box which depicts the allocation for the Walrasian prices.

Simulation Results

In Figure 4.18, an Edgeworth box is plotted for sample channel realizations with two

transmit antennas at each transmitter. For the prices calculated from Theorem 4 we ob-

tain the Walrasian equilibrium allocation on the contract curve where the corresponding

indifference curves are tangent. The indifference curves are obtained from Proposition

3. The line passing through the Walrasian equilibrium allocation defines the budget sets

of the consumers as is illustrated in Figure 4.15.

In Figure 4.19, the SINR region is plotted. The points lying inside the SINR region

correspond to the beamforming vectors in (4.1), where a subset of these points are

Pareto optimal. The Pareto boundary corresponds to the allocations on the contract

curve calculated in Theorem 2. The exchange equilibria are all Pareto optimal points

that dominate the Nash equilibrium (joint MRT). Assuming the links are rational, only

exchange equilibria are of interest for the links. In other words, the links will not cooper-
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Figure 4.19.: SINR region of a two-user MISO IFC with SNR = 0 dB and two antennas

at the transmitters.

ate if one link would achieve lower payoff than at the Nash equilibrium. The Walrasian

equilibrium from Theorem 4 is an exchange equilibrium. In Figure 4.19, we also plot

the maximum sum SINR which is obtained by grid search over the allocations on the

Pareto boundary. The virtual SINR coordination point corresponds to the coordina-

tion mechanism in [ZG09], where the minimum mean square error (MMSE) transmit

beamforming vectors

wMMSE
k =

[σ2I + hkℓh
H
kℓ]

−1hkk

‖[σ2I + hkℓh
H
kℓ]−1hkk‖

, k 6= ℓ, (4.38)

are proven to achieve a Pareto optimal point. These beamforming vectors require only

local CSI at the transmitters which is an appealing property in terms of the low overhead

in information exchange between the links. In Figure 4.19, it can be seen that the

virtual SINR coordination and the maximum sum SINR points are both not necessarily

exchange equilibria. Hence, these points are not suitable for distributed implementation

between the rational links.

In Figure 4.19, the NBS and KS solution are plotted. These solutions are exchange

equilibria and according to simulations, these two solutions are not far from each other.

Note that the NBS is defined for convex utility regions only, and the SINR region Φ

in our case is not necessarily convex as is shown in Figure 4.19. However, solving the

optimization problem in (4.34) by grid search over 103 generated Pareto optimal points

from Theorem 2 gives a single solution which we plot in Figure 4.19. The two Pareto

optimal points (φUP
1 , φNE

2 ) and (φNE
2 , φUP

2 ) are the bounds to the core and are marked with
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circles on the Pareto boundary in Figure 4.19. These bounds, as discussed in Section

4.1.1, can be calculated in the Edgeworth box as the intersection of the contract curve

and the indifference curves corresponding to the Nash equilibrium. The KS solution

which solves the problem in (4.36) using the core bounds is then found by grid search

over the generated Pareto optimal points from Theorem 2.
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4.3. Proofs

4.3.1. Proof of Lemma 1

The direct and interference power gains, |hH
kkwk(λk)|2 and |hH

kℓwk(λk)|2, k 6= ℓ, are

calculated as functions of the parameters λk by using the expression for the beamforming

vectors in (2.9). The direct power gain is calculated as:

|hH
kkwk(λk)|2 =

(
√

λk
hH

kkΠhkℓ
hkk

‖Πhkℓ
hkk‖ +

√
1 − λk

hH
kkΠ⊥

hkℓ
hkk

‖Π⊥
hkℓ

hkk‖

)2

=
(√

λk‖Πhkℓ
hkk‖ +

√
1 − λk‖Π⊥

hkℓ
hkk‖

)2
. (4.39)

The interference power is:

|hH
kℓwk(λk)|2 =

∣∣∣∣∣
√

λk
hH

kℓΠhkℓ
hkk

‖Πhkℓ
hkk‖ +

√
1 − λk

hH
kℓΠ

⊥
hkℓ

hkk

‖Π⊥
hkℓ

hkk‖

∣∣∣∣∣

2

= λk
|hH

kℓΠhkℓ
hkk|2

‖Πhkℓ
hkk‖2

= λk‖hkℓ‖2. (4.40)

These expressions lead to (4.4) and (4.5) in Lemma 1.

4.3.2. Proof of Theorem 1

First, it is easy to see that the SINR expression in (4.6) is continuous. The SINR

φk

(
x

(k)
1 , x

(k)
2

)
is strongly increasing with the goods x

(k)
1 and x

(k)
2 if φk

(
x′(k)

1 , x′(k)
2

)
>

φk

(
x

(k)
1 , x

(k)
2

)
whenever

(
x′(k)

1 , x′(k)
2

)
6=
(
x

(k)
1 , x

(k)
2

)
and

(
x′(k)

1 , x′(k)
2

)
≥
(
x

(k)
1 , x

(k)
2

)

[JR03, Definition A1.17]. Define the directional derivative of φk at
(
x

(k)
1 , x

(k)
2

)
in direc-

tion z as

∇zφk

(
x

(k)
1 , x

(k)
2

)
= lim

t→0

φk

((
x

(k)
1 , x

(k)
2

)
+ tz

)
− φk

(
x

(k)
1 , x

(k)
2

)

t
. (4.41)

Since φk

(
x

(k)
1 , x

(k)
2

)
is differentiable, the limit above can be given as [JR03, Chapter

A.2]

∇zφk

(
x

(k)
1 , x

(k)
2

)
= ∇φk

(
x

(k)
1 , x

(k)
2

)
z, (4.42)

where ∇φk

(
x

(k)
1 , x

(k)
2

)
is the gradient of φk at

(
x

(k)
1 , x

(k)
2

)
written as

∇φk

(
x

(k)
1 , x

(k)
2

)
=




∂φk

(
x

(k)
1 , x

(k)
2

)

∂x
(k)
k

,
∂φk

(
x

(k)
1 , x

(k)
2

)

∂x
(k)
ℓ



, (4.43)

with ℓ 6= k. The directional derivative of φk

(
x

(k)
1 , x

(k)
2

)
defines the slope of the tan-

gent to φk

(
x

(k)
1 , x

(k)
2

)
at the point

(
x

(k)
1 , x

(k)
2

)
in the direction z. Hence, if the direc-

tional derivative is positive for z = (z1, z2)T with z1 and z2 nonnegative and satisfying
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‖z‖ =
√

z2
1 + z2

2 = 1, then the utility function φk

(
x

(k)
1 , x

(k)
2

)
is strongly increasing. Con-

sequently, the directional derivative in (4.42) is strictly positive if the components of the

gradient ∇φk

(
x

(k)
1 , x

(k)
2

)
are strictly positive. The first component of ∇φk

(
x

(k)
1 , x

(k)
2

)
is

∂φk

(
x

(k)
1 , x

(k)
2

)

∂x
(k)
k

=

(√
x

(k)
k gk +

√(
1 − x

(k)
k

)
ǧk

)(√
gk

x
(k)
k

−
√

ǧk

1−x
(k)
k

)

σ2 + λMRT
ℓ gℓk − x

(k)
ℓ gℓk

. (4.44)

The partial derivative in (4.44) is strictly larger than zero when x
(k)
k < gk/(ǧk + gk).

Substituting ǧk and gk from Lemma 1 we get

x
(k)
k <

gk

ǧk + gk
=

‖Πhkℓ
hkk‖2

‖hkk‖2
= λMRT

k . (4.45)

Since x
(k)
k ∈ [0, λMRT

k ], the partial derivative in (4.44) is strictly larger than zero except

for x
(k)
k = λMRT

k . The second component of ∇φk

(
x

(k)
1 , x

(k)
2

)
is

∂φk

(
x

(k)
1 , x

(k)
2

)

∂x
(k)
ℓ

= gℓk

(√
x

(k)
k gk +

√(
1 − x

(k)
k

)
ǧk

)2

(
σ2 + λMRT

ℓ gℓk − x
(k)
ℓ gℓk

)2 , (4.46)

with ℓ 6= k, which is strictly larger than zero for x
(k)
ℓ ∈ [0, λMRT

ℓ ]. Hence, the directional

derivative in (4.42) is strictly positive for
(
x

(k)
1 , x

(k)
2

)
∈ [0, λMRT

1 ]×[0, λMRT
2 ] except for the

case x
(k)
k = λMRT

k and z = (1, 0). Since λMRT
k is the upper bound on x

(k)
k , the slope of the

function φk

(
x

(k)
1 , x

(k)
2

)
in the direction x

(k)
k as is restricted by the condition z = (1, 0)

is not of interest.

Next, we will prove that the SINR function is jointly quasiconcave with the goods

by proving that the SINR is strictly pseudoconcave. Consider the SINR expression in

(4.6), and define

f
(
x

(k)
k

)
:=

(√
x

(k)
k gk +

√(
1 − x

(k)
k

)
ǧk

)2

, (4.47)

g
(

x
(k)
ℓ

)
:= σ2 + λMRT

ℓ gℓk − x
(k)
ℓ gℓk. (4.48)

The function φk

(
x

(k)
1 , x

(k)
2

)
= f

(
x

(k)
k

)
/g
(

x
(k)
ℓ

)
is strictly pseudoconcave if f

(
x

(k)
k

)
is dif-

ferentiable and strictly concave and g
(
x

(k)
ℓ

)
is differentiable and convex [Sch83, Propo-

sition 2]. It is clear that g
(
x

(k)
ℓ

)
and f

(
x

(k)
k

)
are differentiable. The function g

(
x

(k)
ℓ

)

is convex since it is linear in x
(k)
ℓ . In order to show that f

(
x

(k)
k

)
is strictly concave, we
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build the second derivative of f
(
x

(k)
k

)
as follows:

d2f
(
x

(k)
k

)

d2x
(k)
k

=

(√
gk/x

(k)
k −

√
ǧk/
(
1 − x

(k)
k

))2

−
(√

x
(k)
k gk +

√(
1 − x

(k)
k

)
ǧk

)

√√√√

gk(
x

(k)
k

)3 +

√√√√
ǧk(

1 − x
(k)
k

)3




=
gk

x
(k)
k

+
ǧk(

1 − x
(k)
k

) − 2

√√√√
gk ǧk(

1 − x
(k)
k

)(
x

(k)
k

) − gk

x
(k)
k

(4.49)

− ǧk(
1 − x

(k)
k

) −

√√√√√√

(
1 − x

(k)
k

)
gkǧk

(
x

(k)
k

)3 −

√√√√√
x

(k)
k gkǧk(

1 − x
(k)
k

)3 (4.50)

= −2

√√√√
gkǧk(

1 − x
(k)
k

)(
x

(k)
k

) −

√√√√√√

(
1 − x

(k)
k

)
gkǧk

(
x

(k)
k

)3 −

√√√√√
x

(k)
k gkǧk(

1 − x
(k)
k

)3 < 0.

The second derivative of f
(
x

(k)
k

)
is strictly less than zero. Thus, f

(
x

(k)
k

)
is strictly

concave. Accordingly, φk

(
x

(k)
1 , x

(k)
2

)
is strictly pseudoconcave.

4.3.3. Proof of Proposition 3

The indifference curve I1 (analogously for consumer 2) for a given utility φ′
1 satisfies

φ′
1 =

(√
x

(1)
1 g1 +

√(
1 − x

(1)
1

)
ǧ1

)2

f
(
x

(1)
2

) , (4.51)

where f
(
x

(1)
2

)
= σ2 + λMRT

2 g21 − x
(1)
2 g21. We need to solve for x

(1)
1 in (4.51). Cross

multiplying the terms in (4.51) we get

φ′
1f
(
x

(1)
2

)
= x

(1)
1 g1 +

(
1 − x

(1)
1

)
ǧ1 + 2

√
x

(1)
1 g1

(
1 − x

(1)
1

)
ǧ1, (4.52)

2

√
x

(1)
1 g1

(
1 − x

(1)
1

)
ǧ1 = φ′

1f
(
x

(1)
2

)
− x

(1)
1 g1 −

(
1 − x

(1)
1

)
ǧ1, (4.53)

4x
(1)
1 g1

(
1 − x

(1)
1

)
ǧ1 =

(
φ′

1f
(
x

(1)
2

)
− x

(1)
1 g1 −

(
1 − x

(1)
1

)
ǧ1

)2
. (4.54)

Collecting the terms x
(1)
1 and

(
x

(1)
1

)2
we get the following quadratic equation

(
x

(1)
1

)2
(g1 + ǧ1)2

︸ ︷︷ ︸
A1

−2x
(1)
1

(
(g1 − ǧ1)

(
φ′

1f
(
x

(1)
2

)
− ǧ1

)
+ 2g1ǧ1

)

︸ ︷︷ ︸
B1

+
(
φ′

1f
(
x

(1)
2

)
− ǧ1

)2

︸ ︷︷ ︸
C1

= 0.

(4.55)
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The two solutions of the above equation are

x
(1)
1 =

B1 ±
√

B2
1 − A1C1

A1
=

B1

A1
±
√

B2
1 − A1C1

A2
1

. (4.56)

The product of the two solutions in (4.56) is C1/A1 > 0 which means that both roots

have the same sign. Knowing that one root has to be in the set [0, λMRT
1 ] from (4.1),

then both roots have to be positive. Therefore, the smallest solution from (4.56) is of

interest written as

x
(1)
1 =

B1

A1
−
√

B2
1 − A1C1

A2
1

. (4.57)

Calculating B1/A1 we get

B1

A1
=

(g1 − ǧ1)
(
φ′

1f
(
x

(1)
2

)
− ǧ1

)
+ 2g1ǧ1

(g1 + ǧ1)2 , (4.58)

=
g1φ′

1f
(
x

(1)
2

)
+ ǧ1

(
g1 + ǧ1 − φ′

1f
(
x

(1)
2

))

(g1 + ǧ1)2 , (4.59)

=
g1φ′

1f
(
x

(1)
2

)
+ (g1 + ǧ1 − g1)

(
g1 + ǧ1 − φ′

1f
(
x

(1)
2

))

(g1 + ǧ1)2 , (4.60)

= λMRT
1

φ′
1

φ1

(
λMRT

1 , x
(1)
2

) + (1 − λMRT
1 )



1 − φ′
1

φ1

(
λMRT

1 , x
(1)
2

)



, (4.61)

since g1/(g1 + ǧ1) = λMRT
1 and

g1 + ǧ1

f
(
x

(1)
2

) =
‖hkk‖2

σ2 + λMRT
2 g21 − x

(1)
2 g21

= φ1

(
λMRT

1 , x
(1)
2

)
. (4.62)

The discriminant delta ∆1 = B1 − A1C1 is calculated as

∆1 =
(
(g1 − ǧ1)

(
φ′

1f
(
x

(1)
2

)
− ǧ1

)
+ 2g1ǧ1

)2
− (g1 + ǧ1)2

(
φ′

1f
(
x

(1)
2

)
− ǧ1

)2
, (4.63)

=
((

(g1 − ǧ1)
(
φ′

1f
(
x

(1)
2

)
− ǧ1

)
+ 2g1ǧ1

)
− (g1 + ǧ1)

(
φ′

1f
(
x

(1)
2

)
− ǧ1

))

×
((

(g1 − ǧ1)
(
φ′

1f
(
x

(1)
2

)
− ǧ1

)
+ 2g1ǧ1

)
+ (g1 + ǧ1)

(
φ′

1f
(
x

(1)
2

)
− ǧ1

))
, (4.64)

=
((

φ′
1f
(
x

(1)
2

)
− ǧ1

)
(g1 − ǧ1 − g1 − ǧ1) + 2g1ǧ1

)

×
((

φ′
1f
(
x

(1)
2

)
− ǧ1

)
(g1 − ǧ1 + g1 + ǧ1) + 2g1ǧ1

)
, (4.65)

= 2ǧ1

(
g1 + ǧ1 − φ′

1f
(
x

(1)
2

))
2g1

(
φ′

1f
(
x

(1)
2

))
, (4.66)

= 4ǧ1g1

(
g1 + ǧ1 − φ′

1f
(
x

(1)
2

))(
φ′

1f
(
x

(1)
2

))
. (4.67)

87



Chapter 4. Microeconomic Theory Applications

Calculating ∆1/A2
1 we get

B1 − A1C1

A2
1

=
4ǧ1g1

(
g1 + ǧ1 − φ′

1f
(
x

(1)
2

))(
φ′

1f
(
x

(1)
2

))

(g1 + ǧ1)4 , (4.68)

= 4
(g1 + ǧ1 − g1)

(g1 + ǧ1)

g1

(g1 + ǧ1)

(
g1 + ǧ1 − φ′

1f
(
x

(1)
2

))

(g1 + ǧ1)

(
φ′

1f
(
x

(1)
2

))

(g1 + ǧ1)
, (4.69)

= 4(1 − λMRT
1 )λMRT

1


1 − φ′

1

φ1

(
λMRT

1 , x
(1)
2

)


 φ′

1

φ1

(
λMRT

1 , x
(1)
2

) . (4.70)

Substituting (4.61) and (4.70) in (4.57) we get

x
(1)
1 = λMRT

1

φ′
1

φ1

(
λMRT

1 , x
(1)
2

) + (1 − λMRT
1 )


1 − φ′

1

φ1

(
λMRT

1 , x
(1)
2

)




− 2

√√√√√(1 − λMRT
1 )λMRT

1



1 − φ′
1

φ1

(
λMRT

1 , x
(1)
2

)



 φ′
1

φ1

(
λMRT

1 , x
(1)
2

) , (4.71)

=




√√√√λMRT
1

φ′
1

φ1

(
λMRT

1 , x
(1)
2

) −

√√√√√(1 − λMRT
1 )



1 − φ′
1

φ1

(
λMRT

1 , x
(1)
2

)








2

, (4.72)

which concludes the proof.

4.3.4. Proof of Theorem 2

The partial derivatives of φ1

(
x

(1)
1 , x

(1)
2

)
w.r.t. x

(1)
1 and x

(1)
2 are calculated respectively

as

∂φ1

(
x

(1)
1 , x

(1)
2

)

∂x
(1)
1

=

√
x

(1)
1 g1 +

√(
1 − x

(1)
1

)
ǧ1

σ2 + λMRT
2 g21 − x

(1)
2 g21

×

√
g1/x

(1)
1 −

√
ǧ1/
(
1 − x

(1)
1

)

σ2 + λMRT
2 g21 − x

(1)
2 g21

,

(4.73)

∂φ1

(
x

(1)
1 , x

(1)
2

)

∂x
(1)
2

=

(√
x

(1)
1 g1 +

√(
1 − x

(1)
1

)
ǧ1

)2

g21

(
σ2 + λMRT

2 g21 − x
(1)
2 g21

)2 . (4.74)
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The partial derivatives of φ2

(
x

(2)
1 , x

(2)
2

)
w.r.t. x

(2)
1 and x

(2)
2 are computed analogously.

We rewrite condition (4.10) to

(√
g1

x
(1)
1

−
√

ǧ1

1−x
(1)
1

)(
σ2

g21
+ λMRT

2 − x
(1)
2

)

(√
x

(1)
1 g1 +

√(
1 − x

(1)
1

)
ǧ1

) =

(√
x

(2)
2 g2 +

√(
1 − x

(2)
2

)
ǧ2

)

(√
g2

x
(2)
2

−
√

ǧ2

1−x
(2)
2

)(
σ2

g12
+ λMRT

1 − x
(2)
1

) ,

(4.75)

which after rearranging the terms gives

(√
g1

x
(1)
1

−
√

ǧ1

1−x
(1)
1

)(
σ2

g12
+ λMRT

1 − x
(2)
1

)

(√
x

(1)
1 g1 +

√(
1 − x

(1)
1

)
ǧ1

) =

(√
x

(2)
2 g2 +

√(
1 − x

(2)
2

)
ǧ2

)

(√
g2

x
(2)
2

−
√

ǧ2

1−x
(2)
2

)(
σ2

g21
+ λMRT

2 − x
(1)
2

)

︸ ︷︷ ︸
C

.

(4.76)

We define the RHS of (4.76) as C which is a function of x
(2)
2 since the term x

(1)
2 =

λMRT
2 − x

(2)
2 from (4.2). Using the definitions in (4.2), we rewrite (4.76) as



√

g1

x
(1)
1

−
√√√√

ǧ1(
1 − x

(1)
1

)




(
σ2

g12
+ x

(1)
1

)
= C

(√
x

(1)
1 g1 +

√(
1 − x

(1)
1

)
ǧ1

)
. (4.77)

Multiplying both sides of (4.77) with x
(1)
1

(
1 − x

(1)
1

)
we get

(√
(1 − x

(1)
1 )g1 −

√
x

(1)
1 ǧ1

)(
σ2/g12 + x

(1)
1

)
=

C

(
x

(1)
1

√
(1 − x

(1)
1 )g1 + (1 − x

(1)
1 )
√

x
(1)
1 ǧ1

)
. (4.78)

Collecting the terms under the square root we get

√(
1 − x

(1)
1

)
g1

(
σ2

g12
+ x

(1)
1 − Cx

(1)
1

)

︸ ︷︷ ︸
A

=
√

x
(1)
1 ǧ1

(
σ2

g12
+ x

(1)
1 + C

(
1 − x

(1)
1

))

︸ ︷︷ ︸
B

. (4.79)

Square both sides of the equation, on the condition that both sides have the same sign

(
1 − x

(1)
1

)
g1

(
σ2

g12
+ x

(1)
1 − Cx

(1)
1

)2

= x
(1)
1 ǧ1

(
σ2

g12
+ x

(1)
1 + C

(
1 − x

(1)
1

))2

. (4.80)

Collecting x
(1)
1 we get the cubic equation in (4.11) with the coefficients in (4.12)-(4.14).
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4.3.5. Proof of Theorem 3

Since the function φk

(
x

(k)
1 , x

(k)
2

)
is strictly quasiconcave from Theorem 1, then this

function has a unique maximum. Considering consumer 1 (analogously consumer 2),

the Lagrangian function to the constrained optimization problem in (4.23) is

L
(
x

(1)
1 , x

(1)
2 , µ

)
= φ1

(
x

(1)
1 , x

(1)
2

)
+ µ

(
λMRT

1 p1 − x
(1)
1 p1 − x

(1)
2 p2

)
, (4.81)

where µ is a Lagrange multiplier. The Karush–Kuhn–Tucker (KKT) conditions for

optimality are given as:

∂L
(
x

(1)
1 , x

(1)
2 , µ

)

∂x
(1)
1

=
∂φ1

(
x

(1)
1 , x

(1)
2

)

∂x
(1)
1

− µp1 = 0 (4.82)

∂L
(
x

(1)
1 , x

(1)
2 , µ

)

∂x
(1)
2

=
∂φ1

(
x

(1)
1 , x

(1)
2

)

∂x
(1)
2

+ µp2 = 0 (4.83)

∂L
(
x

(1)
1 , x

(1)
2 , µ

)

∂µ
= λMRT

1 p1 − x
(1)
1 p1 − x

(1)
2 p2 = 0 (4.84)

In Section 4.3.2, we proved that the SINR function is strictly pseudoconcave with the

goods. Thus, the KKT conditions for the problem in (4.23) are also sufficient for opti-

mality [Sch83, Proposition 3]. According to conditions (4.82) and (4.83), we get

∂φ1

(
x

(1)
1 , x

(1)
2

)

∂x
(1)
1

1

p1
= −

∂φ1

(
x

(1)
1 , x

(1)
2

)

∂x
(1)
2

1

p2
(4.85)
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(
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(4.86)

⇒
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)
ǧ1

)
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) p1
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. (4.87)

Substituting x
(1)
2 from (4.84) we get

√(
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p1
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, (4.88)
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which leads to
√(

1 − x
(1)
1

)
g1B −

√
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(1)
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(1)
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p2
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√
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(1)
1 ǧ1

(
B +

p1

p2

)
=

√(
1 − x

(1)
1

)
g1B. (4.90)

Squaring both sides on the condition that B ≥ 0 we can write

x
(1)
1 ǧ1

(
B +

p1

p2

)2

=
(
1 − x

(1)
1

)
g1B2. (4.91)

We solve for x
(1)
1 to get

x
(1)
1 =

(
1 +

ǧ1

g1

(
1 +

p1

p2B

)2
)−1

. (4.92)

Substituting B from (4.88) we get the expression in (4.25). x
(1)
2 is calculated according

to (4.84).
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Chapter 5.

Conclusions

We consider the MISO IFC in which multiple links operate concurrently in the same

spectral band. We assume single-user decoding capabilities at the receivers, i.e., the

receivers treat interference as noise. Moreover, each transmitter has perfect local CSI

such that each transmitter knows the channels between itself and all receivers perfectly.

This setting is strictly competitive and can be suitably analyzed using tools from game

theory and microeconomic theory.

Our interest in this thesis has been in the joint beamforming design at the transmitters

such that Pareto optimal solutions are attained. At a Pareto optimal point, a change

in the beamforming vectors of the transmitters leads to a degradation in performance

to at least one link. With this respect, Pareto optimality ensures efficient exploitation

of the available resources.

Noncooperative games in the MISO IFC are modeled by games in strategic form. The

Nash equilibrium of a strategic game determines the noncooperative choice of strategies

of the players (links). A link in the MISO IFC is noncooperative if its transmission does

not take into account the interference it generates at other links. We reveal that non-

cooperative operation of the links corresponding to joint MRT is generally not efficient.

This fact drives us to design coordination and cooperation mechanisms to improve the

joint performance of the links from the Nash equilibrium. We prove that for a specific

design of constraints at the transmitters, the Nash equilibrium can be improved. Specif-

ically, we characterize the necessary null-shaping constraints on the strategy space of

each transmitter such that the Nash equilibrium outcome is Pareto optimal. The null

shaping constraints are to be set by an arbitrator which is an existing authority that

coordinates the strategies of the transmitters.

In contrast to strategic games, coalitional games in game theory provide cooperative

solutions between the players. We study cooperation between the links via coalitional

games without transferable utility. In coalitional games, a player has an incentive to
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cooperate with other players if this improves his payoff. We model the setting as a game

in coalitional form without transferable utility. The players in a coalition either perform

ZF transmission or WF precoding to each other. Necessary and sufficient conditions, in

terms of a lower SNR threshold, are provided under which all players have the incentive

to cooperate and form a grand coalition with ZF transmission. In addition, we provide

sufficient conditions under which all players have no incentive to cooperate. In this case,

the SNR has to be below a specified SNR threshold. Hence, there exists an SNR range in

which the links would profit in forming subcoalitions. Therefore, we turn our attention to

coalition formation games between the links. We utilize a coalition formation algorithm,

called merge-and-split, to determine stable user grouping. Numerical results show that

while in the low SNR regime noncooperation is efficient with single-player coalitions, in

the high SNR regime all users benefit in forming a grand coalition. Coalition formation

shows its significance in the mid SNR regime where subset user cooperation provides

joint performance gains.

The conflict between two links in the MISO IFC can be related to models from mi-

croeconomic theory. In such models, general equilibrium theory is used to determine

equilibrium measures that are Pareto optimal. First, we consider the links to be con-

sumers that can trade goods within themselves. The goods in our setting correspond

to the parameters of the beamforming vectors necessary to achieve all Pareto optimal

points in the SINR region. We utilize the Edgeworth box to illustrate the allocation

of the goods between the consumers. Pareto optimal allocations in the Edgeworth box

correspond to the contract curve which we characterize in closed-form. The exchange

equilibria are a subset of the points on the Pareto boundary at which both consumers

achieve larger utility than at the Nash equilibrium. The set of exchange equilibria is

related to the core concept in coalitional games. Thus, the exchange equilibria are ac-

ceptable cooperative outcomes for a bargaining process between the two consumers. We

propose a decentralized bargaining process between the consumers which starts at the

Nash equilibrium and ends at an outcome arbitrarily close to an exchange equilibrium.

This process requires four-bit signaling between the transmitters at each bargaining-step.

The design of the bargaining process relies on a systematic study of the allocations in

the Edgeworth box. In comparison to existing bargaining approaches, our bargaining

outcome is arbitrarily close to the Pareto boundary of the SINR region.

We model the situation between the links as a competitive market which extends

the exchange model to define prices for the goods. The equilibrium in this economy is

called Walrasian and corresponds to the prices that equate the demand to the supply

of goods. We characterize the unique Walrasian equilibrium and propose a coordina-
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tion process that is realized by the arbitrator to distribute the Walrasian prices to the

consumers. The consumers then calculate in a decentralized manner their optimal de-

mand corresponding to beamforming vectors to achieve the Walrasian equilibrium. This

outcome is Pareto optimal and lies in the set of exchange equilibria. Accordingly, the

Walrasian equilibrium shares similar properties with the Nash bargaining solution and

the Kalai-Smorodinsky solution from axiomatic bargaining theory.

Game theoretic models as well as models from microeconomic theory are successfully

applied to the beamforming problem in the MISO IFC. Performance improvement from

the Nash equilibrium can be achieved whenever cooperation between the links or coor-

dination from an arbitrator is possible. While the game theoretic results are applicable

for the K-user MISO IFC, the models from microeconomic theory have been applied

only for the two-user case. Next, we discuss open problems and extensions of our results.

5.1. Open Problems

While the tools in microeconomic theory can be applied to general K consumer and n

goods economy as can be found in [JR03, MCWG95], the application to the beamforming

problem in the MISO IFC can currently be done only for the two-user case. This

is mainly because of the structure of the parametrization available for the efficient

beamforming vectors in the general case.

Using the parametrization in (2.9) for two-users, we have chosen the amount of good

for consumer 1 in Section 4.1.1 as x
(1)
1 = λ1 and the amount of good for consumer 2 from

good 1 as x
(2)
1 = λMRT

1 − λ1. With this relation between the parameters and the goods

and due to the structure of the expression in (4.1), the SINR in (4.6) for link 1 depends

only on x
(1)
1 and x

(1)
2 which are the amounts from good 1 and good 2 for consumer 1.

This method of defining the goods in terms of the parameters does not carry on for the

K-user MISO IFC case. We illustrate this drawback based on an example in the 3-user

case. The parametrization for the beamforming vectors from (2.12) are

w1(ξ11, ξ12, ξ13) = vmax

(
ξ11h11hH

11 − ξ12ξ12h12hH
12 − ξ13h13hH

13

)

w2(ξ21, ξ22, ξ23) = vmax

(
−ξ21h21hH

21 + ξ22ξ22h22hH
22 − ξ23h23hH

23

)

w3(ξ31, ξ32, ξ33) = vmax

(
−ξ31h31hH

31 − ξ32ξ32h32hH
32 + ξ33h33hH

33

)
(5.1)

where ξk1 +ξk2 +ξk3 = 1, k ∈ {1, 2, 3}. Note that different real-valued parameterizations

are also provided in [SCP11, ZC10, BBO12] which also lead to the same conclusion in

terms of the application of the exchange economy model. We use the parametrization

in (5.1) in order to highlight the usage of the different parameters. In (5.1), three goods
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can be directly distinguished each corresponding to the parameters of each transmitter.

We can choose the amount of good 1 (analogously for goods 2 and 3) to be divided

between the three links as x
(1)
1 = ξ11 for link 1, x

(2)
1 = ξ12 for link 2, and x

(3)
1 = ξ13

for link 3. In order to model this setting as an exchange economy, the utility (SINR)

of link k should only depend on the amounts of goods x
(k)
1 , x

(k)
2 , x

(k)
3 . However, with

the parametrization in (5.1), the SINR expression of a link k would depend on all

parameters. Hence, in formulating the demand of consumer k as is done in the two-

user case in (4.23), the solution depends also on the demands of the other consumers.

In this case, each consumer cannot find his optimal demand of goods independently

without knowing what the other consumers demand. Due to this fact, it is currently

not possible to find the Walrasian equilibrium in the general K-user MISO IFC case. A

new parametrization of the beamforming vectors should be devised that is suitable for

modeling the parameters of the efficient beamforming vectors as goods.

The extension of our results to the MIMO IFC requires a characterization of the

efficient beamforming vector for this case. Currently there exists no parametrization

for the necessary beamforming vectors to achieve all points on the Pareto boundary

of the MIMO IFC rate region. As most of our results in the MISO IFC rely on the

parametrization of the efficient beamforming vectors, providing a parametrization in

the MIMO IFC is important. Currently, the only work which exists that deals with this

problem is [CJS12]. In [CJS12], the Pareto boundary of the two-user MIMO IFC rate

region with single stream beamforming is characterized by an approach of maximizing

the rate of a single link while fixing the rate of the other link. Due to the coupling in

the optimizations of the transmitters, an iterative alternating algorithm is used which

solves at each instant a quadratically constrained quadratic program (QCQP) at each

transmitter.

In this thesis, we have assumed perfect CSI at the transmitters. Extensions towards

more practical assumptions such as partial or imperfect CSI at the transmitters is es-

sential. Another extension of our results is to consider multi-user decoding (MUD)

capabilities at the receivers. An investigation would be interesting whether the microe-

conomic models used in Chapter 4 are applicable for the parametrization in [HGJM11]

in order to derive Pareto optimal coordination or cooperation mechanisms.
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Appendix A.

Further Contributions

During the period of my Ph.D. studies, I have been involved in further publications which

have not been included in this theses. The reason for not including the corresponding

contributions is to restrict our analysis to a unified system model of the MISO IFC on

which models from game theory and microeconomic theory are applied. Here, we list

the further contributions.

In [DMSG11] and [DSMG09] results from my Diploma thesis under the supervision

of Dr. Waltenegus Dargie have been published. My Diploma thesis has been concerned

with the development of an energy-efficient topology control protocol for wireless sensor

networks.

[DMSG11] W. Dargie, R. Mochaourab, A. Schill, and L. Guan, “A topology con-

trol protocol based on eligibility and efficiency metrics,” Journal of

Systems and Software, vol. 84, no. 1, pp. 2–11, 2011.

[DSMG09] W. Dargie, A. Schill, R. Mochaourab, and L. Guan, “A topology con-

trol protocol for 2D Poisson distributed wireless sensor networks,” in

Proc. IEEE AINA Workshops, May 2009, pp. 582–587.

In [JMM09] and the journal version [JMM10], the maximization of the effective capac-

ity in a single-user MIMO system is conducted with partial CSI at the transmitter. The

effective capacity is a performance measure which takes into account the communication

delay.

[JMM09] E. A. Jorswieck, R. Mochaourab, and M. Mittelbach, “Effective capac-

ity maximization in multi-antenna channels with covariance feedback,”

in Proc. IEEE ICC, Jun. 2009, pp. 1–5.

[JMM10] E. A. Jorswieck, R. Mochaourab, and M. Mittelbach, “Effective capac-

ity maximization in multi-antenna channels with covariance feedback,”

IEEE Trans. Wireless Commun., vol. 9, no. 10, pp. 2988–2993, 2010.
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In [LJLM09], noncooperative and cooperative game theoretic models are presented

for conflict analysis and resource allocation in the interference channel. This work has

been a motivation for me to utilize game theoretic tools in the MISO IFC.

[LJLM09] E. G. Larsson, E. A. Jorswieck, J. Lindblom, and R. Mochaourab,

“Game theory and the flat-fading Gaussian interference channel,”

IEEE Signal Process. Mag., vol. 26, no. 5, pp. 18–27, Sep. 2009.

In [JM09b], a strategic game is studied in the two-user MISO IFC with eavesdropping

possibilities at the receivers. The achievable secrecy rate region is characterized. It is

shown that the Nash equilibrium in this setting is more efficient than in the case without

considering secrecy.

[JM09b] E. A. Jorswieck and R. Mochaourab, “Secrecy rate region of MISO

interference channel: Pareto boundary and non-cooperative games,” in

Proc. 13th International ITG Workshop on Smart Antennas (WSA),

Feb. 2009.

In [JM09a] and [MJ09], a setting is considered in which two cells operate on protected

and shared bands. Each cell can use two frequency bands. One band is for exclusive

use and the other band is shared with the other cell. In each cell, a single user is

selected for transmission based on its channel conditions. In [JM09a], the problem of

the manipulability of the Nash equilibrium by user cheating is studied. Results from

mechanism design are applied to force truthful feedback from the users. In [MJ09], the

Nash equilibrium in this setting is analyzed regarding uniqueness, global stability and

efficiency. Properties from supermodular games are exploited for this purpose.

[JM09a] E. A. Jorswieck and R. Mochaourab, “Power control game in protected

and shared bands: Manipulability of Nash equilibrium,” in Proc. 1st

International Conference on Game Theory for Networks (GameNets),

May. 2009, pp. 428–437, invited.

[MJ09] R. Mochaourab and E. A. Jorswieck, “Resource allocation in protected

and shared bands: Uniqueness and efficiency of Nash equilibria,” in

Proc. 3rd ICST/ACM International Workshop on Game Theory in

Communication Networks (Gamecomm), Oct. 2009, pp. 1–10.

In [MCJ10] and the journal version [CMJ10], noncooperative games in the two-user

SISO IFC are studied. Energy-efficiency is achieved when each system pays a price pro-

portional to its allocated transmit power. An arbitrator is introduced to the system who
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determines the prices to satisfy minimum QoS requirements as well as minimum total

power consumption. The Nash equilibrium with pricing is studied regarding uniqueness

and global stability.

[CMJ10] Z. Chong, R. Mochaourab, and E. A. Jorswieck, “Pricing in noncooper-

ative interference channels for improved energy efficiency,” EURASIP

J. Wirel. Commun. Netw., vol. 2010, p. 12, 2010.

[MCJ10] R. Mochaourab, Z. Chong, and E. A. Jorswieck, “Pricing in noncoop-

erative interference channels for improved energy-efficiency,” in Proc.

CROWNCOM, Jun. 2010, pp. 1–5.

In [HGJM10] and the journal version [HGJM11], the two-user MISO IFC is studied

with MUD capabilities at the receivers. The necessary beamforming vectors to achieve

the Pareto boundary of the achievable Rate region are characterized.

[HGJM10] K. M. Z. Ho, D. Gesbert, E. A. Jorswieck, and R. Mochaourab, “Beam-

forming on the MISO interference channel with multi-user decoding

capability,” in Proc. ACSSC, Nov. 2010, pp. 1196–1201.

[HGJM11] K. M. Z. Ho, D. Gesbert, E. A. Jorswieck, and R. Mochaourab, “Beam-

forming on the MISO interference channel with multi-user decoding

capability,” IEEE Trans. Inf. Theory, 2011, submitted. Available

online at http://arxiv.org/abs/1107.0416.

In [MJ11b], the journal version of [Jor10], the beamforming vectors for a general MISO

setting depending on the monotonicity properties of the power gains at the receivers

in the network are characterized. The characterization is made utilizing the concept

of power gain region which is associated with a single transmitter. The number of

parameters needed to characterize the efficient beamforming vectors is T (K−1) where T

is the number of transmitters and K the number of receivers in the network. In [JM10a]

and [JM10b], the framework in [MJ11b] is used to characterize the Pareto boundary of

the rate region of the MISO IFC in cognitive radio settings. In [JM10b], the secondary

transmitters are to operate under the constraints of producing restricted amount of

interference at the primary users. We consider two settings. In the first setting, the

primary systems are assumed to tolerate an amount of interference originating from

secondary systems. This amount of interference is controlled by a pricing mechanism

that penalizes the secondary systems in proportion to the interference they produce on

the primary users. In the second setting, null-shaping constraints are imposed on the

secondary transmitters. We characterize for both settings transmission strategies that
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correspond to Pareto optimal operation points for the secondary systems. In [JM10a],

motivated by the surprising result that all Pareto efficient points can be achieved as a

Nash equilibrium by imposing certain virtual null-shaping constraints, we consider the

problem of selecting a subset of the noncooperative secondary users for operation under

the objective of maximizing their achievable sum rate. A low complexity suboptimal

greedy secondary user selection algorithm is proposed.

[MJ11b] R. Mochaourab and E. A. Jorswieck, “Optimal beamforming in inter-

ference networks with perfect local channel information,” IEEE Trans.

Signal Process., vol. 59, no. 3, pp. 1128–1141, Mar. 2011.

[JM10a] E. A. Jorswieck and R. Mochaourab, “Beamforming in underlay cog-

nitive radio: Null-shaping constraints and greedy user selection,” in

Proc. CROWNCOM, Jun. 2010, pp. 1–5, invited.

[JM10b] E. A. Jorswieck and R. Mochaourab, “Beamforming in underlay cog-

nitive radio: Null-shaping design for efficient Nash equilibrium,” in

Proc. 2nd International Workshop on Cognitive Information Process-

ing (CIP), Jun. 2010, pp. 476–481, invited.

In [MJ11a], the MISO IFC is considered where each transmitter is equipped with

a uniform linear array. By controlling the geometry of the array, i.e. adapting the

antenna spacing, the rotation of the array, and the number of antenna elements, we

investigate whether the capacity of the channel can be achieved with single-user decoding

capabilities at the receivers. This objective is reached when it is possible for each

transmitter to perform MRT to its intended receiver while simultaneously nulling the

interference at all unintended receivers. We provide for the two and three user case the

necessary antenna spacing and rotation angle of the array in closed-form. For the four

user case, an integer programming problem is formulated which additionally determines

the required number of antennas.

[MJ11a] R. Mochaourab and E. A. Jorswieck, “Beamforming in interference

networks for uniform linear arrays,” in Proc. 5th European Conference

on Antennas and Propagation (EuCAP), Apr. 2011, pp. 2445–2449.

In [MJ11c] and the journal version [MJ12b], the MISO IFC with imperfect CSI at the

transmitters is considered. The beamforming vectors that achieve the Pareto boundary

of the two-user robust rate region are characterized in [MJ11c]. The extension to the

K-user case is done in [MJ12b]. The beamforming vectors that are necessary to achieve

all Pareto optimal points in the robust rate region are parameterized by K(K − 1) real-

valued parameters. We analyze the system’s spectral efficiency at high and low SNR. ZF
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transmission achieves full multiplexing gain at high SNR only if the estimation errors

scale linearly with inverse SNR. If the errors are SNR independent, then single-user

transmission is optimal at high SNR. At low SNR, robust MRT optimizes the minimum

energy per bit for reliable communication.

[MJ11c] R. Mochaourab and E. A. Jorswieck, “Robust Pareto optimal beam-

forming in two-user multiple-input single-output interference channel,”

in Proc. 19th European Signal Processing Conference (EUSIPCO),

Aug. 2011, invited.

[MJ12b] R. Mochaourab and E. A. Jorswieck, “Robust beamforming in interfer-

ence channels with imperfect transmitter channel information,” Signal

Processing, vol. 92, no. 10, pp. 2509–2518, 2012.
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