10 research outputs found

    Assisted Entanglement Distillation

    Full text link
    Motivated by the problem of designing quantum repeaters, we study entanglement distillation between two parties, Alice and Bob, starting from a mixed state and with the help of "repeater" stations. To treat the case of a single repeater, we extend the notion of entanglement of assistance to arbitrary mixed tripartite states and exhibit a protocol, based on a random coding strategy, for extracting pure entanglement. The rates achievable by this protocol formally resemble those achievable if the repeater station could merge its state to one of Alice and Bob even when such merging is impossible. This rate is provably better than the hashing bound for sufficiently pure tripartite states. We also compare our assisted distillation protocol to a hierarchical strategy consisting of entanglement distillation followed by entanglement swapping. We demonstrate by the use of a simple example that our random measurement strategy outperforms hierarchical distillation strategies when the individual helper stations' states fail to individually factorize into portions associated specifically with Alice and Bob. Finally, we use these results to find achievable rates for the more general scenario, where many spatially separated repeaters help two recipients distill entanglement.Comment: 25 pages, 4 figure

    Hypergraph min-cuts from quantum entropies

    Get PDF
    The von Neumann entropy of pure quantum states and the min-cut function of weighted hypergraphs are both symmetric submodular functions. In this article, we explain this coincidence by proving that the min-cut function of any weighted hypergraph can be approximated (up to an overall rescaling) by the entropies of quantum states known as stabilizer states. We do so by constructing a novel ensemble of random quantum states, built from tensor networks, whose entanglement structure is determined by a given hypergraph. This implies that the min-cuts of hypergraphs are constrained by quantum entropy inequalities, and it follows that the recently defined hypergraph cones are contained in the quantum stabilizer entropy cones, which confirms a conjecture made in the recent literature

    Holographic duality from random tensor networks

    Full text link
    Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface topologically in a way similar to creation of a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by AdS/CFT duality, our main results define a more general form of bulk-boundary correspondence which could be useful for extending holography to other spacetimes.Comment: 57 pages, 13 figure

    One-shot holography

    Full text link
    Following the work of [2008.03319], we define a generally covariant max-entanglement wedge of a boundary region BB, which we conjecture to be the bulk region reconstructible from BB. We similarly define a covariant min-entanglement wedge, which we conjecture to be the bulk region that can influence the boundary state on BB. We prove that the min- and max-entanglement wedges obey various properties necessary for this conjecture, such as nesting, inclusion of the causal wedge, and a reduction to the usual quantum extremal surface prescription in the appropriate special cases. These proofs rely on one-shot versions of the (restricted) quantum focusing conjecture (QFC) that we conjecture to hold. We argue that this QFC implies a one-shot generalized second law (GSL) and quantum Bousso bound. Moreover, in a particular semiclassical limit we prove this one-shot GSL directly using algebraic techniques. Finally, in order to derive our results, we extend both the frameworks of one-shot quantum Shannon theory and state-specific reconstruction to finite-dimensional von Neumann algebras, allowing nontrivial centers.Comment: 84 pages, 8 figure
    corecore