research

Assisted Entanglement Distillation

Abstract

Motivated by the problem of designing quantum repeaters, we study entanglement distillation between two parties, Alice and Bob, starting from a mixed state and with the help of "repeater" stations. To treat the case of a single repeater, we extend the notion of entanglement of assistance to arbitrary mixed tripartite states and exhibit a protocol, based on a random coding strategy, for extracting pure entanglement. The rates achievable by this protocol formally resemble those achievable if the repeater station could merge its state to one of Alice and Bob even when such merging is impossible. This rate is provably better than the hashing bound for sufficiently pure tripartite states. We also compare our assisted distillation protocol to a hierarchical strategy consisting of entanglement distillation followed by entanglement swapping. We demonstrate by the use of a simple example that our random measurement strategy outperforms hierarchical distillation strategies when the individual helper stations' states fail to individually factorize into portions associated specifically with Alice and Bob. Finally, we use these results to find achievable rates for the more general scenario, where many spatially separated repeaters help two recipients distill entanglement.Comment: 25 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions