4 research outputs found

    RelVAE: Generative Pretraining for few-shot Visual Relationship Detection

    Full text link
    Visual relations are complex, multimodal concepts that play an important role in the way humans perceive the world. As a result of their complexity, high-quality, diverse and large scale datasets for visual relations are still absent. In an attempt to overcome this data barrier, we choose to focus on the problem of few-shot Visual Relationship Detection (VRD), a setting that has been so far neglected by the community. In this work we present the first pretraining method for few-shot predicate classification that does not require any annotated relations. We achieve this by introducing a generative model that is able to capture the variation of semantic, visual and spatial information of relations inside a latent space and later exploiting its representations in order to achieve efficient few-shot classification. We construct few-shot training splits and show quantitative experiments on VG200 and VRD datasets where our model outperforms the baselines. Lastly we attempt to interpret the decisions of the model by conducting various qualitative experiments

    One-shot learning for long-tail visual relation detection

    Full text link
    The aim of visual relation detection is to provide a comprehensive understanding of an image by describing all the objects within the scene, and how they relate to each other, in form; for example, . This ability is vital for image captioning, visual question answering, and many other applications. However, visual relationships have long-tailed distributions and, thus, the limited availability of training samples is hampering the practicability of conventional detection approaches. With this in mind, we designed a novel model for visual relation detection that works in one-shot settings. The embeddings of objects and predicates are extracted through a network that includes a feature-level attention mechanism. Attention alleviates some of the problems with feature sparsity, and the resulting representations capture more discriminative latent features. The core of our model is a dual graph neural network that passes and aggregates the context information of predicates and objects in an episodic training scheme to improve recognition of the one-shot predicates and then generate the triplets. To the best of our knowledge, we are the first to center on the viability of one-shot learning for visual relation detection. Extensive experiments on two newly-constructed datasets show that our model significantly improved the performance of two tasks PredCls and SGCls from 2.8% to 12.2% compared with state-of-the-art baselines

    One-Shot Learning for Long-Tail Visual Relation Detection

    No full text
    The aim of visual relation detection is to provide a comprehensive understanding of an image by describing all the objects within the scene, and how they relate to each other, in form; for example, . This ability is vital for image captioning, visual question answering, and many other applications. However, visual relationships have long-tailed distributions and, thus, the limited availability of training samples is hampering the practicability of conventional detection approaches. With this in mind, we designed a novel model for visual relation detection that works in one-shot settings. The embeddings of objects and predicates are extracted through a network that includes a feature-level attention mechanism. Attention alleviates some of the problems with feature sparsity, and the resulting representations capture more discriminative latent features. The core of our model is a dual graph neural network that passes and aggregates the context information of predicates and objects in an episodic training scheme to improve recognition of the one-shot predicates and then generate the triplets. To the best of our knowledge, we are the first to center on the viability of one-shot learning for visual relation detection. Extensive experiments on two newly-constructed datasets show that our model significantly improved the performance of two tasks PredCls and SGCls from 2.8% to 12.2% compared with state-of-the-art baselines

    One-Shot Learning for Long-Tail Visual Relation Detection

    No full text
    corecore