46,512 research outputs found

    Ambient Gestures

    No full text
    We present Ambient Gestures, a novel gesture-based system designed to support ubiquitous ‘in the environment’ interactions with everyday computing technology. Hand gestures and audio feedback allow users to control computer applications without reliance on a graphical user interface, and without having to switch from the context of a non-computer task to the context of the computer. The Ambient Gestures system is composed of a vision recognition software application, a set of gestures to be processed by a scripting application and a navigation and selection application that is controlled by the gestures. This system allows us to explore gestures as the primary means of interaction within a multimodal, multimedia environment. In this paper we describe the Ambient Gestures system, define the gestures and the interactions that can be achieved in this environment and present a formative study of the system. We conclude with a discussion of our findings and future applications of Ambient Gestures in ubiquitous computing

    3DTouch: A wearable 3D input device with an optical sensor and a 9-DOF inertial measurement unit

    Full text link
    We present 3DTouch, a novel 3D wearable input device worn on the fingertip for 3D manipulation tasks. 3DTouch is designed to fill the missing gap of a 3D input device that is self-contained, mobile, and universally working across various 3D platforms. This paper presents a low-cost solution to designing and implementing such a device. Our approach relies on relative positioning technique using an optical laser sensor and a 9-DOF inertial measurement unit. 3DTouch is self-contained, and designed to universally work on various 3D platforms. The device employs touch input for the benefits of passive haptic feedback, and movement stability. On the other hand, with touch interaction, 3DTouch is conceptually less fatiguing to use over many hours than 3D spatial input devices. We propose a set of 3D interaction techniques including selection, translation, and rotation using 3DTouch. An evaluation also demonstrates the device's tracking accuracy of 1.10 mm and 2.33 degrees for subtle touch interaction in 3D space. Modular solutions like 3DTouch opens up a whole new design space for interaction techniques to further develop on.Comment: 8 pages, 7 figure

    Ubiquitous systems and the family: Thoughts about the networked home

    Get PDF
    Developments in ubiquitous and pervasive computing herald a future in which computation is embedded into our daily lives. Such a vision raises important questions about how people, especially families, will be able to engage with and trust such systems whilst maintaining privacy and individual boundaries. To begin to address such issues, we have recently conducted a wide reaching study eliciting trust, privacy and identity concerns about pervasive computing. Over three hundred UK citizens participated in 38 focus groups. The groups were shown Videotaped Activity Scenarios [11] depicting pervasive or ubiquitous computing applications in a number of contexts including shopping. The data raises a number of important issues from a family perspective in terms of access, control, responsibility, benefit and complexity. Also findings highlight the conflict between increased functionality and the subtle social interactions that sustain family bonds. We present a Pre-Concept Evaluation Tool (PRECET) for use in design and implementation of ubicomp systems

    Enabling pervasive computing with smart phones

    Get PDF
    The authors discuss their experience with a number of mobile telephony projects carried out in the context of the European Union Information Society Technologies research program, which aims to develop mobile information services. They identify areas where use of smart phones can enable pervasive computing and offer practical advice in terms of lessons learned. To this end, they first look at the mobile telephone as * the end point of a mobile information service,* the control device for ubiquitous systems management and configuration,* the networking hub for personal and body area networks, and* identification tokens.They conclude with a discussion of business and practical issues that play a significant role in deploying research systems in realistic situations

    Designing ambient intelligent scenarios to promote discussion of human values

    Get PDF
    Ambient technology evokes a near future in which humans will be surrounded by ‘always-on’, unobtrusive, interconnected intelligent objects. Always connected raises concern over human values. This study uses a privacy and trust framework to evaluate two Aml scenarios one health related and the other to the everyday task of shopping. Findings are discussed in relation to dimensions of trust, privacy and the impact upon human values

    Secretory RING finger proteins function as effectors in a grapevine galling insect.

    Get PDF
    BackgroundAll eukaryotes share a conserved network of processes regulated by the proteasome and fundamental to growth, development, or perception of the environment, leading to complex but often predictable responses to stress. As a specialized component of the ubiquitin-proteasome system (UPS), the RING finger domain mediates protein-protein interactions and displays considerable versatility in regulating many physiological processes in plants. Many pathogenic organisms co-opt the UPS through RING-type E3 ligases, but little is known about how insects modify these integral networks to generate novel plant phenotypes.ResultsUsing a combination of transcriptome sequencing and genome annotation of a grapevine galling species, Daktulosphaira vitifoliae, we identified 138 putatively secretory protein RING-type (SPRINGs) E3 ligases that showed structure and evolutionary signatures of genes under rapid evolution. Moreover, the majority of the SPRINGs were more expressed in the feeding stage than the non-feeding egg stage, in contrast to the non-secretory RING genes. Phylogenetic analyses indicated that the SPRINGs formed clusters, likely resulting from species-specific gene duplication and conforming to features of arthropod host-manipulating (effector) genes. To test the hypothesis that these SPRINGs evolved to manipulate cellular processes within the plant host, we examined SPRING interactions with grapevine proteins using the yeast two-hybrid assay. An insect SPRING interacted with two plant proteins, a cellulose synthase, CSLD5, and a ribosomal protein, RPS4B suggesting secretion reprograms host immune signaling, cell division, and stress response in favor of the insect. Plant UPS gene expression during gall development linked numerous processes to novel organogenesis.ConclusionsTaken together, D. vitifoliae SPRINGs represent a novel gene expansion that evolved to interact with Vitis hosts. Thus, a pattern is emerging for gall forming insects to manipulate plant development through UPS targeting

    Tumult and turmoil : privacy in an ambient world

    Get PDF
    Ambient Intelligence (AmI) and ubiquitous computing allow us to consider a future where computation is embedded into our daily social lives. This vision raises its own important questions. Our own interest in privacy predates this impending vision, but nonetheless holds a great deal of relevance there. As a result, we have recently conducted a wide reaching study of people’s attitudes to potential AmI scenarios with a view to eliciting their privacy concerns. The approach and findings will be discussed

    Resonating Experiences of Self and Others enabled by a Tangible Somaesthetic Design

    Get PDF
    Digitalization is penetrating every aspect of everyday life including a human's heart beating, which can easily be sensed by wearable sensors and displayed for others to see, feel, and potentially "bodily resonate" with. Previous work in studying human interactions and interaction designs with physiological data, such as a heart's pulse rate, have argued that feeding it back to the users may, for example support users' mindfulness and self-awareness during various everyday activities and ultimately support their wellbeing. Inspired by Somaesthetics as a discipline, which focuses on an appreciation of the living body's role in all our experiences, we designed and explored mobile tangible heart beat displays, which enable rich forms of bodily experiencing oneself and others in social proximity. In this paper, we first report on the design process of tangible heart displays and then present results of a field study with 30 pairs of participants. Participants were asked to use the tangible heart displays during watching movies together and report their experience in three different heart display conditions (i.e., displaying their own heart beat, their partner's heart beat, and watching a movie without a heart display). We found, for example that participants reported significant effects in experiencing sensory immersion when they felt their own heart beats compared to the condition without any heart beat display, and that feeling their partner's heart beats resulted in significant effects on social experience. We refer to resonance theory to discuss the results, highlighting the potential of how ubiquitous technology could utilize physiological data to provide resonance in a modern society facing social acceleration.Comment: 18 page
    corecore