2 research outputs found

    Fundamental Matrix Computation: Theory and Practice

    Get PDF
    We classify and review existing algorithms for computing the fundamental matrix from point correspondences and propose new effective schemes: 7-parameter Levenberg-Marquardt (LM) search, EFNS, and EFNS-based bundle adjustment. Doing experimental comparison, we show that EFNS and the 7-parameter LM search exhibit the best performance and that additional bundle adjustment does not increase the accuracy to any noticeable degree

    Motion Segmentation by New Three-View Constraint from a Moving Camera

    Get PDF
    We propose a new method for the motion segmentation using a moving camera. The proposed method classifies each image pixel in the image sequence as the background or the motion regions by applying a novel three-view constraint called the “parallax-based multiplanar constraint.” This new three-view constraint, being the main contribution of this paper, is derived from the relative projective structure of two points in three different views and implemented within the “Plane + Parallax” framework. The parallax-based multiplanar constraint overcomes the problem of the previous geometry constraint and does not require the reference plane to be constant across multiple views. Unlike the epipolar constraint, the parallax-based multiplanar constraint modifies the surface degradation to the line degradation to detect the motion objects followed by a moving camera in the same direction. We evaluate the proposed method with several video sequences to demonstrate the effectiveness and robustness of the parallax-based multiplanar constraint
    corecore