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We propose a newmethod for themotion segmentation using amoving camera.The proposedmethod classifies each image pixel in
the image sequence as the background or the motion regions by applying a novel three-view constraint called the “parallax-based
multiplanar constraint.” This new three-view constraint, being the main contribution of this paper, is derived from the relative
projective structure of two points in three different views and implemented within the “Plane + Parallax” framework.The parallax-
based multiplanar constraint overcomes the problem of the previous geometry constraint and does not require the reference plane
to be constant across multiple views. Unlike the epipolar constraint, the parallax-based multiplanar constraint modifies the surface
degradation to the line degradation to detect themotion objects followed by amoving camera in the same direction.We evaluate the
proposed method with several video sequences to demonstrate the effectiveness and robustness of the parallax-based multiplanar
constraint.

1. Introduction

The ground motion detection is an essential challenge in
many computer vision and video processing tasks, such as
vision-based motion analysis, intelligent surveillance, and
regional defense. When the prior knowledge of the motion
object appearance and shape is not available, the change
detection or optical flow can still provide powerful motion-
based cues for segmenting and localizing the objects, even
when the objects move in a cluttered environment or are
partially occluded. The aim of the ground motion object
detection is to segment the motion objects out according to
the motions in the image sequence whether the platform is
moving or not.

For extensive study in detecting the motion objects in
the image sequence captured by a moving camera, the scene
contains multiple objects moving in the background and the
background may also contain a strong parallax produced
by the 3D structures. The motion segmentation in dynamic
image background is inherently difficult, for themoving cam-
era induces 2Dmotion for each pixel.Themotion of pixels in
moving objects is generated by both the independent object
motion and the camera motion. In contrast, the motion of

pixels in the static background is strictly due to the camera
motion.Our goal is to utilizemultiview geometric constraints
to segment the motion objects from the video sequence.

The first geometric constraint used in detecting motion
objects is the homography constraint in 2D planemode [1, 2].
The homography matrix is a global motion model which
can compensate for the camera motion between consecutive
images. The pixels which are consistent with homography
constraint are considered to belong to the static background
[3]. However, those inconsistent pixels may correspond
to the motion objects or parallax regions [4, 5]. Because
the homography constraint cannot distinguish the parallax
regions and the moving objects, the epipolar constraint as
the supplement of the homography constraint is used in the
motion segmentation [6, 7].

The epipolar constraint is a commonly used constraint
for motion segmentation between two views [1, 8, 9]. There
are two corresponding feature points in two images from
the different views. If a feature point in one image does
not lie on the epipolar line induced by its matched feature
point in another image, then the corresponding 3D point
will be determined to be moving [10]. However, the epipolar
constraint is not sufficient to detect all kinds of 3D motion.
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Indeed, when the motion objects move on a special plane
in 3D, then the epipolar constraint cannot detect them [1].
This phenomenon is called “surface degradation.” The 3D
point moves on the epipolar plane which is formed by two
camera centers of the different views and the point itself,
so its 2D projections move along the epipolar lines. In this
case, the motion objects cannot be detected by the epipolar
constraint. The surface degradation often happens when the
moving camera follows the objects moving along the same
line.

In order to overcome the surface degradation of the
epipolar constraint, the geometric constraints overmore than
two views need to be imposed.The trilinear constraint can be
applied to segment the motion objects across three views [1,
11]. However, estimating the parameters of the trifocal tensor
is a nontrivial task, which requires accurate correspondence
of the points and large camera motion.

In this paper, inspired by [12], we propose a novel three-
view constraint which is named “parallax-based multiplanar
constraint.” The parallax-based multiplanar constraint as the
supplement of the epipolar constraint modifies the surface
degradation to the line degradation. Compared to the previ-
ous method based on the “Plane + Parallax” framework [12–
15], the parallax-based multiplanar constraint can segment
the motion objects without a fixed reference plane. The main
contributions can be summarized as follows.

(1) The parallax-based multiplanar constraint can seg-
ment the motion objects without a fixed reference
plane. The traditional methods [13–15] assume that
the reference plane is consistent across three views.
However, this assumption is not valid sometimes.
The parallax-based multiplanar constraint is inspired
by [12] and segmenting the motion object without
a fixed reference plane based on “Plane + Parallax”
framework. This is the main contribution in this
paper.

(2) A reference point is introduced to replace the epipole.
The calculation of the epipole is inaccurate when
the motion vectors of the feature points are followed
by a moving camera in the same direction [13].
The reference point can improve the accuracy of
the parameters to get better results for the motion
segmentation.

(3) A motion segmentation framework based on the
parallax-based multiplanar constraint is proposed. In
the motion segmentation framework, the parallax-
based multiplanar constraint and the homography
constraint are applied in the “Plane + Parallax”
framework. This motion segmentation framework
can reduce the run time and apply the parallax-based
multiplanar constraint into real-time system.

The paper is organized as follows. In Section 2, we
briefly review the existing approaches related to our work.
Section 3 formally describes the epipolar constraint and the
surface degradation that the epipolar constraint is unable
to handle. In Section 4, we briefly review the definition
of the parallax-based rigidity constraint in [12]. We then

introduce the parallax-based multiplanar constraint and its
degenerate cases in Section 5.The application of the parallax-
based multiplanar constraint is explained in Section 6. The
experimental results are shown and discussed in Section 7.
Section 8 concludes our paper and presents possible direc-
tions for future research.

2. Related Work

From what is described in Section 1, the methods of the
motion objects detection from amoving camera are vast.The
parallax-based multiplanar constraint is based on “Plane +
Parallax” framework to segment the motion objects. It con-
siders that the image sequence can be decomposed into the
reference plane, the parallax, and the motion objects. Thus,
the motion segmentation methods based on the background
subtraction and the motion segmentation with the strong
parallax are the most related topics to this paper.

The background subtraction method has a wide range of
applications in the static camera [14]. A novel framework to
segment the motion objects by detecting contiguous outliers
in the low-rank representation is proposed in [4, 15]. It
avoids the complicated motion computation by formulating
the problem as outlier detection and makes use of the low-
rank modeling to deal with complex background. A new
method is based on Dirichlet process Gaussian mixture
models, which are used to estimate per-pixel background
distributions. It is followed by the probabilistic regularization.
Using a nonparametric bayesian method allows per-pixel
mode counts to be automatically inferred, avoiding over-
/underfitting [16]. These methods have get the better effect
in motion segmentation without the strong parallax.

For motion segmentation with the strong parallax, sparse
motion field estimation is a common approach [17, 18].
The sparse motion field of the corners is recovered and
the corners that belong to the same motion pattern are
classified according to their motion consistency [17, 19, 20].
The constraint equations are applied in the optical flow to
decompose the background and foreground [21]. An effective
approach is to do background subtraction for complex videos
by decomposing the motion trajectory matrix into a low rank
one and a group sparsity one. Then the information from
these trajectories is used to further label foreground at the
pixel level [22]. The motion segmentation approaches [23]
segment the point trajectories based on subspace analysis.
These algorithms provide interesting analysis on sparse tra-
jectories, though they do not output a binary mask as many
background subtraction methods do. However, most of the
methods based on sparsemotion field estimation assume that
the motion object can be represented by the feature points
(example as Harris corners). This assumption is invalid in
many cases, so the detect rate is poor for these methods.

3. Epipolar Constraint and
Surface Degradation

The epipolar geometry is the intrinsic projective geometry
between two views. It is independent of the scene structure
and only depends on the cameras’ internal parameters and
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Figure 1: Application of the epipolar constraint. (a)Motion object detected by the epipolar constraint. (b) Surface degradation: motion object
moving on the plane.

relative pose of the camera.The epipolar constraint is usually
used in the motion segmentation in two views. The fun-
damental matrix is the algebraic representation of epipolar
geometry [1, 8].

Suppose that there are two images acquired by cameras
with noncoincident centers; then the fundamental matrix 𝐹

21

is the homogeneous matrix between view 1 and view 2 which
satisfies
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where |𝑙󸀠
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Furthermore, 𝑑epi is used to detect whether the 3D point
𝑃 is moving or not. If 𝑑epi > 0, 𝑃 is moving. However, there is
a special kind of case, called “surface degradation,” where the
moving points cannot be detected by the epipolar constraint.
The surface degradation happens when the objects are mov-
ing in a special plane, as illustrated in Figure 1(b). If point 𝑃
and the camera centers 𝐶

1
and 𝐶

2
constitute a plane 𝜋 in 3D

Euclidean space and point𝑃moves to𝑃
󸀠 and𝑃
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∈ 𝜋, point 𝑝󸀠

2
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2
and point𝑝

1
lies on 𝑙
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in 2D images. In this situation,

𝑑epi = 0 and the surface degradation happens.
Unfortunately, the camera follows the motion objects

moving in the same direction in many practical cases
[12, 24]. If the camera follows the objectsmoving in the same
direction, the surface degradation may happen. In order to
solve the surface degradation, multiview constraints need to
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Figure 2: Geometric interpretation of the “planar + parallax” frame-
work.

be introduced.Therefore, in Sections 4 and 5, the novel three-
view constraints are proposed to segment the motion object.

4. Parallax-Based Rigidity Constraint

The “Plane + Parallax” framework [12, 15, 25] extends the 2D
parametric registration approach to general 3D scenes. The
plane registration process (using the dominant 2Dparametric
transformation) removes all effects of camera rotation, zoom,
and calibration, without explicitly computing them. The
residual image motion after the plane registration is only
due to the translational motion of the camera and to the
deviations of the scene structure from the planar surface.

4.1. “Plane +Parallax” Framework. Figure 2 provides the geo-
metric interpretation of the “Planar + Parallax” framework.
Let 𝑃 = (𝑋, 𝑌, 𝑍) denote a 3D static point and let 𝑃1 = (𝑋

1
,

𝑌
1
, 𝑍
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)
𝑇 and 𝑃

2
= (𝑋
2
, 𝑌
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, 𝑍
2
)
𝑇 denote the coordinates of

𝑃 in different camera views. Let the 3 × 3 rotation matrix 𝑅

and the 3 × 1 translation vector 𝑇 = (𝑇
𝑋
, 𝑇
𝑌
, 𝑇
𝑍
) denote the

rotation and translation between the camera systems.
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Figure 3: Pairwise parallax-based shape constraint. (a) Interpretation of the relative structure constraint. (b) When the parallax vectors are
nearly parallel, the epipole estimation is unreliable.
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) denote the image coordinates

of the 3D point 𝑃 projected onto two different views. The
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𝑇. Let Π be an arbitrary planar surface

and 𝑃 ∈ Π. 𝐴 denote the homography matrix that aligns
the planar surface Π between two different views. We can
describe it as 𝑝1 = 𝐴𝑝

2 [1].
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views. It can be shown, as well, that
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where 𝑝
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Π
denotes the image point in view 1 which results

from warping the corresponding 𝑝
2 in view 2, by the 2D

parametric transformation of the reference planeΠ. The first
view is referred to as the reference view. Also, 𝑑

2
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perpendicular distance from the second camera center to
the reference plane Π, and noted 𝑒

1 denotes the epipole.
𝛾
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particular, 𝛾1 = 𝐻/𝑍
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from 𝑃 to the reference plane Π, and 𝑍
1 is 𝑍-distance of

point 𝑃 in the first camera coordinate systems. We refer 𝛾
1

to the projective 3D structure of point 𝑃. The use of the
“Plane + Parallax” framework for ego-motion estimation is
described in [12], and for 3D shape recovery it is described
in [26]. The “Plane + Parallax” framework is more general
than the traditional decomposition in terms of rotational and
translational motion.

4.2. Parallax-Based Rigidity Constraint
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where, as shown in Figure 3(a), 𝑝
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Form Figure 3(a), 𝛾1
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𝑇
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AB/AC when the epipole is stable. However, when the
parallax vectors are nearly parallel, the epipole estimation
is unreliable. However, the relative structure AB/AC can be
reliably computed in this case (see Figure 3(b)).

Theorem 1 is called “parallax-based shape constraint,”
proved in [12], and it is noted that this constraint directly
relates the relative projective structure of two points to
their parallax displacements alone: no camera parameters, in
particular the epipole (FOE), which is difficult to calculate
accurately [27–29]. This is different from the traditional
methods that use the two parallax vectors to recover the
epipole and then use the magnitudes and distances of the
points from the computed epipole to estimate their relative
projective structure. The benefit of the constraint (5) is that
it provides this information directly from the positions and
parallax vectors of the two points, without the need to go
through the computation of the epipole [12].
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Theorem2. Given the planar-parallax displacement vectors of
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( ⃗𝐽
1

𝑗
)
𝑇

(Δ𝑝
1

Π
)
⊥

( ⃗𝐽1
𝑟
)
𝑇

(Δ𝑝
1

Π
)
𝑗

⊥

−

( ⃗𝐽
2

𝑗
)
𝑇

(Δ𝑝
2

Π
)
⊥

( ⃗𝐽2
𝑟
)
𝑇

(Δ𝑝
2

Π
)
⊥

= 0, (6)
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points [12].

In the case of the parallax-based shape constraint, the
parallax-based rigidity constraint (Theorem 2) relates the
parallax vectors of the pairs of points over three views
without referring to any camera parameters. However, the
parallax-based rigidity constraint assumes that the reference
plane is consistent across three views. This assumption is
not valid sometimes, since the interframe homographies
are automatically estimated and the reference planes may
correspond to different parts of the scene.

5. Parallax-Based Multiplanar Constraint

In this work, we propose a novel three-view constraint, which
is called the “parallax-based multiplanar constraint.” This
constraint is capable of detecting the motion object that the
epipolar constraint cannot detect without a fixed reference
plane across three views.

5.1. Description of the Parallax-Based Multiplanar Constraint

Theorem 3. The image points 𝑝
1

𝑗
and 𝑝

2

𝑗
given in view 1 and

view 2, which are projected by the 3D point 𝑃 which belongs to
the background, must all satisfy the following constraint:
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where 𝛾1
𝑗
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is the relative projective structure for view 1 to view

2 and 𝛾
2

𝑗
/𝛾
2

𝑟
is the relative projective structure for view 2 to view

3.N is a 4 × 4 matrix (proof: see Appendix A).

Theorem 3 is called “parallax-based multiplanar con-
straint.”The parallax-basedmultiplanar constraint represents
a constraint for the same point in the background by their
relative 3D projective structure. This constraint can detect
the moving objects from the moving camera without a fixed
reference plane across three views. Its degenerate case ismod-
ified from the surface degradation to the line degradation (it
is discussed in Section 5.2).
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Figure 4: Degenerate case for parallax-based multiplanar con-
straint.

5.2. Degradation of the Parallax-Based Multiplanar Con-
straint. The parallax-based multiplanar constraint uses the
relative 3D projective structure from three views to detect the
moving objects.This constraint is capable of detectingmost of
the degenerate cases mentioned in this paper. However, there
still exists a degenerate case that cannot be detected.

Result 4. There is a 3Dmoving point 𝑃 and its𝑍 axis coordi-
nates in the view 1, view 2 and view 3 are equal. The parallax-
basedmultiplanar constraint cannot detect this moving point
(proof: see Appendix B).

Figure 4 shows the degenerate case for parallax-based
multiplanar constraint. Fortunately, these cases happenmuch
less frequently in reality, because the proportional relation-
ship is not easily satisfied.

6. Application of the Parallax-Based
Multiplanar Constraint

In this section, we present some implementation details of a
detecting and tracking moving objects system based on the
parallax-based multiplanar constraint. As shown in Figure 5,
the system is built as a pipeline of five stages: feature point
matching, plane segmentation, dense optical flow, object
extraction, and spatiotemporal tracking.

This system starts with the feature point matching. Then,
the homography parameters and the parallax-based multi-
planar constraint parameters are estimated by the feature
points matching. We can get the plane residual image which
is composed of the pixels which are not satisfied for the
homography constraint. The motion field of the binary of
the plane residual image can be obtained by the dense
optical flow. The parallax-based multiplanar constraint can
distinguish the parallax pixels and motion pixels from the
plane residual image. Finally, the 2D motion pixels obtained
from each frame are linked into motion trajectories by a
spatiotemporal tracking algorithm.

The Kanade-Lucas-Tomasi (KLT) feature tracking [30–
32] is applied to extract and track feature points in the image
sequence {𝐼

𝑡+𝑖
| 𝑖 = −Δ, . . . , 0, . . . , Δ}. Δ is the temporal

window size.
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The homography parameters can be estimated by the
method described in [1]. 𝐼

𝑡+𝑖
can be warped to 𝐼

𝑡
by the

homography matrix. Then, after estimating the background
model [33, 34] (we use the single gauss algorithm in this
work), we obtain the binary image of the plane residual image
which is composed by the pixels with intensity differences
larger than thresholdThhom.

We chose three images (𝐼
𝑡+𝜏

, 𝐼
𝑡
, and 𝐼

𝑡−𝜏
, (𝜏 is the time

interval)) from the image sequence and estimate parallax-
based multiplanar constraint parameters by the correspond-
ing feature points. The parallax-based multiplanar constraint
parameters are estimated by the similar method of estimating
the fundamental matrix [1]. N is obtained by singular value
decomposition. The random sample consensus (RANSAC)
scheme is a common choice, which finds a solution with the
largest inlier support [1].

The motion field of the pixel in the binary image of the
plane residual image can be acquired by the dense optical flow
in [31, 32]. We define an algebraic error function through (7):

𝑑parallax =
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𝑟

]N
4×4

[
[
[

[

𝑝
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𝑗
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𝛾1
𝑟

]
]
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (8)

When 𝑑parallax > thpara, this pixel is in the motion region. On
the contrary (𝑑parallax ≤ thpara), the pixel is in parallax region.
thpara is a parallax threshold. So we can extract the motion
object from the plane residual image and get the motion
binary image.

Themotion binary images are further refined by standard
morphological operations such as erosion and dilation. The
connected pixels are grouped into compact motion regions,
whereas scattered pixels are removed.The tracking step takes
image appearance, 2Dmotion vectors, andmotion likelihood
of these regions as its observation and link similar regions
into object trajectories. Since the object tracking is not the
focus of this paper, interested readers can refer to [35, 36].

7. Experiment and Analysis

In this section, we present the experimental results obtained
by a number of video sequences. In all the video sequences,
the camera undergoes general rotation and translation. Both
the qualitative and quantitative results demonstrate the effec-
tiveness and robustness of our method.

7.1. Qualitative Evaluation. There are five video sequences
that have been adopted to qualitatively demonstrate the effec-
tiveness and robustness of the parallax-based multiplanar
constraint.

In Figure 6, we show the segmenting results of a video
sequencewhich is captured in the laboratory.We use checker-
board pattern that only has black and white checks to com-
pose the background of the video and a cylindrical object as
a motion object. So, we can call this video “chessboard.” This
background can ensure that there are enough feature points
(Harris corners are accepted in this paper) in it. The video is
captured by amoving gray camera; the resolution of the video
is 315 × 235; the frame frequency is 25 fps. In this paper, the
parameters are Δ = 40, 𝜏 = 5, Thhom = 0.2, and thpara = 0.75.
We show the three-frame images (#148, #153, and #158) in the
video sequence which are shown in Figures 6(a), 6(b), and
6(c) and the red points are defined as the reference points.
The camera translates from the left to right. In this video
sequence the reference plane is the checkerboard. There are
two static objects as the parallax regions. After computing
by 2D registration [1], the parallax and motion regions are
obtained from the plane residual image which is shown in
Figure 6(d). As can be seen in Figure 6(d), the two parallax
regions are clear. Figure 6(e) is the residual image of the
parallax-based multiplanar constraint. The intensity of the
motion region is greater than the other region whether
including or not the parallax region. In Figure 6(f), it is
the binary result of the residual image of the parallax-based
multiplanar constraint and shown that the parallax regions
(the two static objects) are eliminated finally.

The second video sequence is the experiment video of
[12] and is named “car 1.” Its resolution is 320 × 240; the
frame frequency is 25 fps. In this paper, the parameters are
Δ = 12, 𝜏 = 3, Thhom = 0.31, and thpara = 0.68. Figure 7(a)
is the original image (#17) and the red points are defined
as the reference points. In this sequence the camera is in
motion (translating from the left to right), inducing parallax
motion of different magnitudes on the house, road, and road
sign. The car moves independently from the left to right.
Figure 7(b) is the plane residual image and Figure 7(c) is the
binary result of the plane residual image. Because the car
is followed by a moving camera in the same direction, the
surface degradation of the epipolar constraint happened and
is shown in Figure 7(d). Figure 7(e) is the residual of the
parallax-based multiplanar constraint computed over three
frames. The final binary result is shown in Figure 7(f). From
Figure 7, the parallax-based multiplanar constraint modifies
the surface degradation to the line degradation to segment
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(a) (b) (c)

(d) (e) (f)

Figure 6:Motion segmentation result of the “chessboard.” (a) Original image of frame 148. (b) Original image of frame 153. (c) Original image
of frame 158. (d) Plane residual image. (e) Residual image of the parallax-based multiplanar constraint. (f) Binary result of the parallax-based
multiplanar constraint.

(a) (b) (c)

(d) (e) (f)

Figure 7: Motion segmentation result of “car 1.” (a) Original image of frame 17. (b) Plane residual image. (c) Binary result of the plane residual
image. (d) Residual image of the epipolar constraint. (e) Residual image of the parallax-based multiplanar constraint. (f) Binary result of the
parallax-based multiplanar constraint.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Motion segmentation result of “car 2.” (a) Original image of frame 19. (b) Original image of frame 21. (c) Original image of frame
23. (d) Plane residual image. (e) Residual image of the parallax-based rigidity constraint. (f) Residual image of the parallax-based multiplanar
constraint.

motion objects followed by a moving camera in the same
direction.

In Figure 8, it is shown that a camera moves from the left
to right and there is a car that moves from the right to left.We
can call it “car 2.” This video is captured by a gray camera. Its
resolution is 315 × 235; the frame frequency is 25 fps. In this
paper, the parameters are Δ = 40, 𝜏 = 2, Thhom = 0.2, and
thpara = 0.8. In this video sequence, three-frame images (#19,
#21, and #23) are shown in Figures 8(a), 8(b), and 8(c) and
the red points are defined as the reference points. In Figures
8(a) and 8(b), the green points are the corner points which
are the inner points for reference plane between frames 19
and 21. In Figures 8(b) and 8(c), the blue points are the corner
points which are the inner points for reference plane between
frames 21 and 23. So, the reference plane is changed from
frame 19 to frame 23. Figure 8(d) is the plane residual image.
The motion regions cannot be segmented from the residual
image of the parallax-based rigidity constraint, which is
shown in Figure 8(e), because of the change of the reference
plane. Figure 8(f) is the residual image of the parallax-based
multiplanar constraint. From Figure 8, the parallax-based
multiplanar constraint can obtain a better effect compared
with the parallax-based rigidity constraint, because it does
not need a fixed reference plane over three frames.

Figure 9 is an infrared video acquired from the VIVID
dataset. Its resolution is 310 × 246; the frame frequency is
30 fps. In this paper, the parameters are Δ = 30, 𝜏 = 3,
Thhom = 0.2, and thpara = 0.82. The camera is in unmanned
aerial vehicle.There are three cars moving on the road. So, we
can call it “cars 1.” The building is considered as the parallax

region. The first row is the original images from 71 to 77 and
the red points are defined as the reference points.The second
row is the plane residual images.The third row is the residual
of the parallax-based multiplanar constraint.The final binary
results are shown in the fourth row. We demonstrate the
potential of the parallax-basedmultiplanar constraint applied
to the motion segmentation problems using the Berkeley
motion segmentation dataset in Figure 10. In this video, there
is a car moving on the road and the camera moves from the
right to left. It is called “car 4.” Its resolution is 320 × 240;
the frame frequency is 30 fps. In this paper, the parameters
are Δ = 30, 𝜏 = 2, Thhom = 0.32, and thpara = 0.74. The
first row is the original images from 13 to 17 and the red
points are defined as the reference points. The second row
is the plane residual images. The third row is the residual of
the parallax-based multiplanar constraint. The final binary
results are shown in the fourth row.

From all of the above experiments, we can know that
the parallax-based multiplanar constraint can segment the
motion regions from the “moving” background. First of all,
compared with the homography constraint, the parallax-
based multiplanar constraint can segment the parallax
regions and the motion regions. Secondly, the parallax-based
multiplanar constraint modifies the surface degradation of
the epipolar constraint to the line degradation and can detect
the motion object which follows the direction of the camera
move. Thirdly, in the process of motion segmentation, the
parallax-based multiplanar constraint does not need a fixed
reference plane across three views.Therefore, thismethod can
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Figure 9: Motion segmentation result of “cars 1.”

Figure 10: Motion segmentation result of “car 3.”
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Figure 11: The ground-truth data and the motion segmentation results of the parallax-based multiplanar constraint for the “chessboard”
video.
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Figure 12: Quantitative evaluation results for “chessboard” video. (a) Curve of the detection rate. (b) Curve of the precision rate.

effectively extract the motion object from a moving camera
and this camera is uncalibrated.

7.2. Quantitative Evaluation. In order to quantitatively evalu-
ate the performance of our system, we have manually labeled
the ground-truth data on the above video sequences. The
ground-truth data refer to a number of 2D polygons in
each video frame, which approximate the contour of motion
regions. For the “chessboard” and “car 2” videos, there are 20
frames labeled in different parts.

Based on the ground-truth and detected motion mask
images, we define two area-based metrics to evaluate our
method [37]. Let Φ

𝑡

𝑔
denote the set of pixels that belong to

the ground-truthmotion regions in frame 𝑡 and letΦ𝑡
𝑑
denote

the set of the actually detected pixels in frame 𝑡. We define a
detection rate to evaluate how many detected pixels lie in the
ground-truth motion regions as

𝑅 (𝑡) =

𝑁 (Φ
𝑡

𝑑
∩ Φ
𝑡

𝑔
)

𝑁 (Φ𝑡
𝑔
)

(9)

and a precision rate to evaluate howmany detected pixels are
indeed motion pixels as

𝑃 (𝑡) = 1 −

𝑁(Φ
𝑡

𝑑
∩ Φ
𝑡

𝑔
)

𝑁 (Φ
𝑡

𝑑
)

, (10)

whereΦ is the complement set ofΦ and𝑁(Φ) is the number
of pixels within Φ. In this, 𝑅(𝑡) ∈ [0, 1] and 𝑃(𝑡) ∈ [0, 1].
The higher both measures are, the better the performance of
motion segmentation becomes.

The detection rate and the precision rate measures are
computed over the labeled video frames to evaluate the
performance of our motion segmentation method. For the
“chessboard” and “car 1” videos, we evaluate four moving
segmentation methods: epipolar constraint [1], parallax-
based rigidity constraint [12], detecting contiguous outliers
in the low-rank representation (DECOLOR) [4], and our
method.

Thefirst line and the third line of Figure 11 are the ground-
truth data; the second line and fourth line are the motion
segmentation results of the parallax-based multiplanar con-
straint for the “chessboard” video. The red points are defined
as the reference points.

Let us quantitatively compare the performance of the
methods based on the curves of the detection rate and
precision rate. The detection rate of the epipolar constraint
is low compared with the other methods in Figure 12(a) for
the surface degradation. The DECOLORmethod is based on
the homography constraint so that the parallax regions and
the motion regions are considered as “motion objects.” Its
precision rate is lower than the othermethods in Figure 12(b).
In Figure 12, the parallax-based multiplanar overcomes the
surface degradation of the epipolar constraint. it can get the
better effect in the detection rate and the precision rate.
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Figure 13: The ground-truth data and the motion segmentation results of the parallax-based multiplanar constraint for “car 2” video.
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Figure 14: Quantitative evaluation results for “car 2” video. (a) Curve of the detection rate. (b) Curve of the precision rate.

Figure 13 is the ground-truth data and the motion seg-
mentation results of the parallax-based multiplanar con-
straint for “car 2” video which is similar to Figure 11.

In Figure 13, when the reference planar is changed from
frame 262 to frame 264, there are a lot of false alarms detected
by the parallax-based rigidity constraint and DECOLOR
which are shown in Figure 14(b). In contrast, the parallax-
based multiplanar constraint segments the motion objects
without a fixed reference plane, so it performs better in
precision rate.

7.3. Parameter Selection. There are a few parameters that are
found to be critical for system performance.

The first important measure is the temporal window
size Δ. This parameter is used by the homograph image
registration to get the plane background. Δ relates to the
frame frequency and the size of camera motion. If Δ is set
too small, the detect rate may decline. On the contrary, if it
is set too big, the overlap region is too small to not detect the
motion object and the false alarm probability may increase
for the accumulated errors. Δ is proportional to the frame
frequency and inversely proportional to the size of camera
motion.

The second one, that is, the time interval 𝜏, is used for
the estimation of the parallax-based multiplanar constraint
parameters. 𝜏 also relates to the frame frequency and the size
of camera motion. If the difference of continuous image is
rather small, 𝜏 needs to be increased for a stable estimation
of the parallax-based multiplanar constraint parameters.

The third parameter is the homograph threshold Thhom.
Thhom is set at low value to make sure that there are enough
pixels to compute the 𝑑parallax. This threshold needs to be
adjusted to different scene configurations in order to include
all the possible motion pixels and enough parallax pixels as
well. However, if Thhom is set too small, the run time may
increase.

The fourth parameter is the parallax threshold thpara.This
parameter is used to segment the parallax distance 𝑑parallax to
detect the motion objects. thpara relates to the time interval 𝜏
and is proportional to it.

8. Conclusion

We have presented a novel method for detecting moving
objects in video sequences captured from moving cameras.
It uses the multiview geometric constraints for motion
detection in three or multiple views. Moreover, the parallax-
based multiplanar constraint this paper proposed overcomes
the problem of the previous geometry constraint and does
not require the reference plane is constant across themultiple
views and modifies the surface degradation of the epipolar
constraint to the line degradation. It can detect the motion
objects followed by a moving camera in the same direction.
The experimental results demonstrate the effectiveness and
robustness of our approach.

There are several doable directions for future work to be
carried out. An appropriate reference point can be found for
computing the parallax. If the camera projection matrices
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are known or obtained by the self-calibration techniques [1],
then both the static background and the moving objects can
be reconstructed and aligned together in the 3D Euclidean
space.

Appendices

A. Derivation of the Parallax-Based
Multiplanar Constraint

In this appendix, we prove Theorem 3; we derive (7).
Let 𝑃
𝑗

= (𝑋
𝑗
, 𝑌
𝑗
, 𝑍
𝑗
) be a 3D static point and its 3D

coordinates in view 1, view 2, and view 3 are expressed as𝑃1
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=
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, 𝑌
1

𝑗
, 𝑍
1

𝑗
), 𝑃2
𝑗

= (𝑋
2

𝑗
, 𝑌
2

𝑗
, 𝑍
2

𝑗
), and 𝑃

3

𝑗
= (𝑋
3

𝑗
, 𝑌
3

𝑗
, 𝑍
3

𝑗
). There

is another 3D static point 𝑃
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point and its 3D coordinates are expressed in three views
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of the 3D point𝑃
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are the homogeneous image coordinates

in image 1, image 2, and image 3, respectively.
From Section 4, for view 1 and view 2, we know that the

3D projective structure of point 𝑃
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Because point 𝑃
𝑟
is reference point, the 3D projective

structure of point 𝛾1
𝑟
is an invariant for all image points. We

can define 𝛾
1

𝑟
= 𝛼
1
and 𝛼

1
is a constant factor for the other

points.
From (A.1), we can know that
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For the 3D point 𝑃1
𝑗
,

𝐻
1

𝑗
= V𝑇
1
𝑃
1

𝑗
− 1, (A.3)

where V
1
is the normal vector of plane Π scaled by 1/𝑑

Π
. 𝑑
Π

is the perpendicular distance from the camera center of view
1 to the reference plane Π.

Substituting (A.3) in (A.2) obtains
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The camera model can be represented as

𝑍
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𝑗
𝐾
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1

𝑗
. (A.5)

Substituting (A.5) in (A.4) obtains
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Similarly, we can get
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for view 2 and view 3.
Let 𝑟
2,1

denote the third row of rotationmatrix𝑅
2,1

and let
𝑡
2,1

denote third component of translation vector𝑇
2,1
.The 3D

depth of point 𝑃1
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Substituting (A.5) into (A.8), we have
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Substituting (A.6) and (A.7) into (A.9), we can obtain
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By rewriting (A.10), we have
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So we can get the parallax-based multiplanar constraint
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B. Degradation of the Parallax-Based
Multiplanar Constraint

In this appendix, we prove Result 4 by the algebraic approach;
we describe the degradation of the parallax-based multipla-
nar constraint.

Let 𝑃
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views. Assume 𝑍
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and, according to (A.6) and

(A.7), we can get
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Substituting (B.1) into (A.10), we can eliminate the left
polynomial

1 = ((𝑟
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Decomposing (B.2), we can get
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Because 𝑍
1

𝑗
= 𝑍
2

𝑗
= 𝑍
3

𝑗
, (B.3) is valid in any case. We can

derive that the degradation of the parallax-based multiplanar
constraint is that the parallax-based multiplanar constraint
cannot detect the motion object when the 𝑍-distance of the
3D point in camera coordinate systems at time {𝑖 | 𝑖 = 1, 2, 3}

is equal to (𝑍1
𝑗
= 𝑍
2

𝑗
= 𝑍
3

𝑗
).
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