9 research outputs found

    Quantum Cellular Automata

    Full text link
    Quantum cellular automata (QCA) are reviewed, including early and more recent proposals. QCA are a generalization of (classical) cellular automata (CA) and in particular of reversible CA. The latter are reviewed shortly. An overview is given over early attempts by various authors to define one-dimensional QCA. These turned out to have serious shortcomings which are discussed as well. Various proposals subsequently put forward by a number of authors for a general definition of one- and higher-dimensional QCA are reviewed and their properties such as universality and reversibility are discussed.Comment: 12 pages, 3 figures. To appear in the Springer Encyclopedia of Complexity and Systems Scienc

    History Dependent Quantum Random Walks as Quantum Lattice Gas Automata

    Get PDF
    Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of quantum walks in algorithmic applications. We show that several history dependent QRW can be identified as one-particle sectors of QLGA. This provides a unifying conceptual framework for these models in which the extra degrees of freedom required to store the history information arise naturally as geometrical degrees of freedom on the lattice

    Non-local finite-depth circuits for constructing SPT states and quantum cellular automata

    Full text link
    Whether a given target state can be prepared by starting with a simple product state and acting with a finite-depth quantum circuit is a key question in condensed matter physics and quantum information science. It underpins classifications of topological phases, as well as the understanding of topological quantum codes, and has obvious relevance for device implementations. Traditionally, this question assumes that the quantum circuit is made up of unitary gates that are geometrically local. Inspired by the advent of noisy intermediate-scale quantum devices, we reconsider this question with kk-local gates, i.e. gates that act on no more than kk degrees of freedom, but are not restricted to be geometrically local. First, we construct explicit finite-depth circuits of symmetric kk-local gates which create symmetry-protected topological (SPT) states from an initial a product state. Our construction applies both to SPT states protected by global symmetries and subsystem symmetries, but not to those with higher-form symmetries, which we conjecture remain nontrivial. Next, we show how to implement arbitrary translationally invariant quantum cellular automata (QCA) in any dimension using finite-depth circuits of kk-local gates. These results imply that the topological classifications of SPT phases and QCA both collapse to a single trivial phase in the presence of kk-local interactions. We furthermore argue that SPT phases are fragile to generic kk-local symmetric perturbations. We conclude by discussing the implications for other phases, such as fracton phases, and surveying future directions. Our analysis opens a new experimentally motivated conceptual direction examining the stability of phases and the feasibility of state preparation without the assumption of geometric locality.Comment: V4: Published version V3: Minor clarifications added V2: Added Section on stability to generic perturbations and new Appendices B and

    When is a quantum cellular automaton (QCA) a quantum lattice gas automaton (QLGA)?

    Get PDF
    Quantum cellular automata (QCA) are models of quantum computation of particular interest from the point of view of quantum simulation. Quantum lattice gas automata (QLGA - equivalently partitioned quantum cellular automata) represent an interesting subclass of QCA. QLGA have been more deeply analyzed than QCA, whereas general QCA are likely to capture a wider range of quantum behavior. Discriminating between QLGA and QCA is therefore an important question. In spite of much prior work, classifying which QCA are QLGA has remained an open problem. In the present paper we establish necessary and sufficient conditions for unbounded, finite Quantum Cellular Automata (QCA) (finitely many active cells in a quiescent background) to be Quantum Lattice Gas Automata (QLGA). We define a local condition that classifies those QCA that are QLGA, and we show that there are QCA that are not QLGA. We use a number of tools from functional analysis of separable Hilbert spaces and representation theory of associative algebras that enable us to treat QCA on finite but unbounded configurations in full detail.Comment: 37 pages, 7 figures, with changes to explanatory text and updated figures, J. Math. Phys. versio
    corecore