2,790,437 research outputs found

    One-cycle control of switching converters

    Get PDF
    A new large-signal nonlinear control technique is proposed to control the duty-ratio d of a switch such that in each cycle the average value of a switched variable of the switching converter is exactly equal to or proportional to the control reference in the steady-state or in a transient. One-cycle control rejects power source perturbations in one switching cycle; the average value of the switched variable follows the dynamic reference in one switching cycle; and the controller corrects switching errors in one switching cycle. There is no steady-state error nor dynamic error between the control reference and the average value of the switched variable. Experiments with a constant frequency buck converter have demonstrated the robustness of the control method and verified the theoretical predictions. This new control method is very general and applicable to all types of pulse-width-modulated, resonant-based, or soft-switched switching converters for either voltage or current control in continuous or discontinuous conduction mode. Furthermore, it can be used to control any physical variable or abstract signal that is in the form of a switched variable or can be converted to the form of a switched variable

    Linear-assisted DC/DC converters with modified current-mode control applied to photovoltaic solar systems

    Get PDF
    This article shows the proposal of a current-mode one-cycle control for linear-assisted DC/DC converters. Linearassisted DC/DC converters are structures that allow to take advantages of the two classic alternatives in the design of power supply systems: voltage linear regulators (classic NPN topology or LDO –low dropout–) and switching DC/DC converters. The current-mode one-cycle control technique is proposed in order to obtain the duty cycle of the linear-assisted converter switch. The proposed structure can provide an output with suitable load and line regulations. Thus, the paper shows the design and simulation results of the proposed current-mode one-cycle linear-assisted converter.Postprint (published version

    Dynamics of one-cycle controlled Ćuk converters

    Get PDF
    One-cycle control is a nonlinear control method. The flow-graph modeling technique is employed to study the large-signal and small-signal dynamic behavior of one-cycle controlled switching converters. Systematic design method for one-cycle control systems is provided with the Ćuk converter as an example. Physical insight is given which explains how one-cycle control achieves instant control without infinite loop gain. Experimental results demonstrate that a Ćuk converter with one-cycle control reflects the power source perturbation in one-cycle and the average of the diode voltage follows the control reference in one cycle

    Electron stripping and re-attachment at atomic centers using attosecond half-cycle pulses

    Full text link
    We investigate the response of two three-body Coulomb systems when driven by attosecond half-cycle pulses: The hydrogen molecular ion and the helium atom. Using very short half-cycle pulses (HCPs) which effectively deliver ``kicks'' to the electrons, we first study how a carefully chosen sequence of HCPs can be used to control to which of one of the two fixed atomic centers the electron gets re-attached. Moving from one electron in two atomic centers to two electrons in one atomic center we then study the double ionization from the ground state of He by a sequence of attosecond time-scale HCPs, with each electron receiving effectively a ``kick'' from each HCP. We investigate how the net electric field of the sequence of HCPs affects the total and differential ionization probabilities

    Fate specification and tissue-specific cell cycle control of the <i>Caenorhabditis elegans</i> intestine

    Get PDF
    Coordination between cell fate specification and cell cycle control in multicellular organisms is essential to regulate cell numbers in tissues and organs during development, and its failure may lead to oncogenesis. In mammalian cells, as part of a general cell cycle checkpoint mechanism, the F-box protein β-transducin repeat-containing protein (β-TrCP) and the Skp1/Cul1/F-box complex control the periodic cell cycle fluctuations in abundance of the CDC25A and B phosphatases. Here, we find that the Caenorhabditis elegans β-TrCP orthologue LIN-23 regulates a progressive decline of CDC-25.1 abundance over several embryonic cell cycles and specifies cell number of one tissue, the embryonic intestine. The negative regulation of CDC-25.1 abundance by LIN-23 may be developmentally controlled because CDC-25.1 accumulates over time within the developing germline, where LIN-23 is also present. Concurrent with the destabilization of CDC-25.1, LIN-23 displays a spatially dynamic behavior in the embryo, periodically entering a nuclear compartment where CDC-25.1 is abundant

    Isolated sub-100-attosecond pulse generation via controlling electron dynamics

    Full text link
    A new method to coherently control the electron dynamics is proposed using a few-cycle laser pulse in combination with a controlling field. It is shown that this method not only broadens the attosecond pulse bandwidth, but also reduces the chirp, then an isolated 80-as pulse is straightforwardly obtained and even shorter pulse is achievable by increasing the intensity of the controlling field. Such ultrashort pulses allow one to investigate ultrafast electronic processes which have never be achieved before. In addition, the few-cycle synthesized pulse is expected to manipulate a wide range of laser-atom interactions.Comment: 11 pages, 4 figure

    Influence of the controller design on the accuracy of a forward dynamic simulation of human gait

    Get PDF
    The analysis of a captured motion can be addressed by means of forward or inverse dynamics approaches. For this purpose, a 12 segment 2D model with 14 degrees of freedom is developed and both methods are implemented using multibody dynamics techniques. The inverse dynamic analysis uses the experimentally captured motion to calculate the joint torques produced by the musculoskeletal system during the movement. This information is then used as input data for a forward dynamic analysis without any control design. This approach is able to reach the desired pattern within half cycle. In order to achieve the simulation of the complete gait cycle two different control strategies are implemented to stabilize all degrees of freedom: a proportional derivative (PD) control and a computed torque control (CTC). The selection of the control parameters is presented in this work: a kinematic perturbation is used for tuning PD gains, and pole placement techniques are used in order to determine the CTC parameters. A performance evaluation of the two controllers is done in order to quantify the accuracy of the simulated motion and the control torques needed when using one or the other control approach to track a known human walking pattern.Postprint (author's final draft
    corecore