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Abstract

The analysis of a captured motion can be addressed by means of forward or inverse
dynamics approaches. For this purpose, a 12 segment 2D model with 14 degrees of
freedom is developed and both methods are implemented using multibody dynamics
techniques. The inverse dynamic analysis uses the experimentally captured motion
to calculate the joint torques produced by the musculoskeletal system during the
movement. This information is then used as input data for a forward dynamic
analysis without any control design. This approach is able to reach the desired
pattern within half cycle. In order to achieve the simulation of the complete gait cycle
two different control strategies are implemented to stabilize all degrees of freedom:
a proportional derivative (PD) control and a computed torque control (CTC). The
selection of the control parameters is presented in this work: a kinematic perturbation
is used for tuning PD gains, and pole placement techniques are used in order to
determine the CTC parameters. A performance evaluation of the two controllers
is done in order to quantify the accuracy of the simulated motion and the control
torques needed when using one or the other control approach to track a known human
walking pattern.
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1. Introduction

Human gait dynamics has been amply studied using multibody dynamics tech-
niques. Depending on the purpose of the study, these techniques can be used either
to analyze a known motion using inverse dynamics or to simulate the motion from

Preprint submitted to Mechanism and Machine Theory September 2, 2016



joint or muscle forces through forward dynamics [1]. More precisely, the inverse
dynamic analysis (IDA) is used to calculate internal joint forces and torques using
acquired kinematic and kinetic data and estimated body segment parameters. On
the other hand, the forward dynamic analysis (FDA) is used to obtain the motion of
the musculoskeletal system as a consequence of the applied forces and torques and
given initial conditions. One advantage of the FDA is that it allows the simulation or
prediction of the actual behavior of the system from a given set of input actuations
(at the muscle or joint level) and system parameters. Therefore, this tool might serve
to anticipate, e.g., the subject’s motion after a surgery or when assistive devices are
used.

In an ideal case, if the results of the IDA are used as inputs of the FDA, the
motion obtained through the forward simulation should match the original captured
motion: as long as the inverse and forward models are the same, the results should
be close to each other. However, since the forward simulation requires a numerical
integration procedure, some differences appear between the captured kinematics (in-
put of the IDA) and the simulated motion (output of the FDA). This discrepancy
can be related to the integration approach and the time steps used, the interpolation
schemes (needed in variable time-step algorithms), the kinematic constraint stabi-
lization method (if it is present) or the method used to solve the differential-algebraic
equations system [2]. However, the discrepancy cannot be resolved without a control
system. Therefore, the use of control algorithms is crucial to ensure stability and
robustness in human gait forward dynamics simulation.

In recent years, new methods for efficient control of the musculoskeletal system
dynamics using optimal control methodologies have been presented [3, 4, 5]. More-
over, a growing interest in motion prediction has appeared [6, 7]. In these approaches,
the basic idea is to use optimization methods to identify both force and kinematic
histories based on the available information of the dynamic system. A nonlinear
optimization is formulated based on the physics of the motion (dynamic equations
of motion), where the objective function includes terms related to the physiology of
muscle actuation and might include terms related to the aesthetics of the predicted
motion as well. This function is minimized subject to some constraints; for example,
dynamic equations of the musculoskeletal system, task or motion constraints, etc.

Using this type of techniques often implies a trial-and-error process, in which
selecting the variables defining the motion and the drive efforts, the cost function
terms (and their associated weight factors), and the appropriate physiological criteria
represents a great challenge. Moreover, the use of such optimization algorithms
requires several function evaluations; and, in the case of forward dynamics-based
optimization, each evaluation requires the forward simulation of the complete motion.



Those techniques need an appropriate controller to stabilize the simulation and,
therefore, the control approach used must be robust to perturbations and efficient
in terms of computational simulation time. This paper analyzes the influence of
two control strategies on the accuracy of the forward simulation of human walking,
without focusing on their implementation in optimization approaches.

When the FDA of a captured motion is carried out, a dynamic inconsistency
between experimental ground reaction forces and model kinematics, obtained from
experimental markers, appears. Usually researchers have attempted to avoid this
problem using controls on the system in order to stabilize the dynamics [8]. Those
controls represent a set of non-physical forces accounting for the mentioned incon-
sistency, which are usually referred to as residual wrench (force and torque). This
wrench is composed by linear and rotational actuators that control the absolute
degrees of freedom of the models base body (pelvis or trunk in most cases).

Investigation of the real control mechanisms of muscles, that apply to reflexes
or controlled motion by the central nervous system, is still a wide open subject of
research in biomechanics and neurophysiology. An appropriate control to generate a
forward dynamic simulation consistent with the locomotor task has not been clari-
fied yet [2]. In the literature, there are two main approaches to face this challenging
problem: following an underactuated methodology or using fully-controlled biome-
chanical models, in which all degrees of freedom are actuated.

The first approach is based on the principle that the human body is not a fully-
actuated system, but an underactuated one. Using this methodology, the actuators
can only be associated to human joints and, therefore, a control on the six degrees of
freedom of the base body cannot be applied. In order to represent the foot-ground
interaction researchers use a force model or a constraint methodology. This is a
challenging area of research and studies following this approach employ very simple
models based on passive dynamic walking to explore the natural dynamics of two-
legged mechanisms (compass walker, 3-segment model, etc.) [9, 10, 11]. Another
example using underactuation can be found in [12] for a jumping exercise.

In contrast, when a complex full-body model is required, authors usually propose
the use of fully-controlled biomechanical models, in which all degrees of freedom
are actuated. For example, the Residual Reduction Algorithm (RRA) proposed
in [8] is a form of forward dynamics simulation that utilizes a controller to track
model kinematics (obtained experimentally) with the aim of reducing the residual
wrench (usually defined between the pelvis and the ground) to the absolute minimum
that is necessary to closely follow the desired kinematics. Therefore, the external
force and torque are reduced, but not eliminated, and the system is fully-actuated.
Moreover, the authors of [2] proposed the use of a PD control to overcome the lack



of correlation between forward and inverse dynamic analyses. In this work, all the
degrees of freedom are controlled as well, and the base segment is the pelvis. A similar
approach was used in [13] with the purpose of demonstrating a computationally
efficient, three-dimensional, torque actuated and forward-dynamics based model of
gait, that had the potential of predicting functional outcomes of orthopedic surgeries
to the musculoskeletal system. Finally, the authors of [14] proposed to combine a
PD controller for each body joint together with a balanced gait controller achieved
by externally manipulating the pitch of the HAT (head, arms and trunk) segment.

In the present work, the fully-controlled approach is used and the controllers
driving the absolute position and orientation of the trunk are associated to the
above-mentioned residual wrench. According to [14], if the model is not supported
or balanced by any artificial means, poorly chosen trajectories can overwhelm the
balance controller, causing the model to fall.

In the robotics field, experimental results show that the computed torque con-
troller has very good performance characteristics and it is becoming increasingly
popular [15]. However, the PD control is by far the most common control algorithm.
It is amply used in controlled dynamic systems due to its simplicity in structure,
robustness in operation and easy comprehension of its principle [16].

Since the musculoskeletal system is a multiple-input multiple-output highly non-
linear system, the use of non-linear techniques in order to control it seems to be a
good solution. For this purpose, some studies linearize the multibody system and
apply a CTC algorithm [4, 17, 18]. However, for the sake of the simplicity, the PD
control scheme is still used in some biomechanics studies [19, 20, 14].

This study aims to highlight how the FDA results may vary depending on the
controller used, and depending on the design of this controller. For this purpose, the
work presents a performance evaluation of the above control strategies for the case of
human walking dynamic simulation. As far as the authors are concerned, a detailed
comparison of the behavior of the two control methods in human motion simulation
was not previously reported in the literature.

In order to compare the controllers, different simulation scenarios are taken into
account: The study starts focusing on the numerical integration methods used and
the differences obtained depending on the applied control technique. After that, the
two control strategies are tested by artificially perturbing the coordinates and the
external wrench (force and torque) applied to the system in a set of computational
forward dynamic simulations of human walking. Differences on the simulated motion
and the dynamic response of the controllers are analyzed and discussed in detail.



2. Dynamic Modeling

2.1. Biomechanical Model

A two-dimensional biomechanical human body model with 14 degrees of freedom
(DOF) is used in this study. The model is a multibody system which consists of 12
rigid bodies: trunk, head, two upper arms, two forearms, two shanks, two thighs and
two feet. The rigid bodies are linked with revolute joints and the model is constrained
to move in the sagittal plane (Fig. 1(a)).

The subject selected to perform the experiments is a healthy adult male, 27
years old, mass 84 kg and height 1,75 m. He walks on a walkway that encloses
two force plates (AMTI, Watertown, USA) sampling at 100 Hz. The motion is
captured by 12 optical cameras (Natural Point, Corvallis, USA) also sampling at 100
Hz that measure the position of the 37 reflective markers attached to the subject.
The anthropometric parameters together with the force plate measurements and
the kinematic information are available at the library of computational multibody
benchmark problems which is under development of the Technical Committee for
Multibody Dynamics of the International Federation for the Promotion of Mechanism
and Machine science (IFToMM) [21].

The human body model can be defined with 13 segment points, representing
the eight revolute joints combined with the end points of the five extreme segments
(Fig. 1(b)). Each point is expressed using X- and Y- Cartesian coordinates (hence, 26
variables). Furthermore, 12 angular coordinates () are described: 11 relative angles
(a1, ...,a11) and one absolute angle («g) which orientates the trunk with respect to
the vertical direction in the sagittal plane (Fig. 1(c)). Therefore, the generalized
coordinates vector q € R" contains n = 38 configuration variables.

2.2. Multibody System Dynamics

The multibody system equations of motion can be expressed as:

Mg+ ®X =Q 0
®(q) =0
which represent a system of differential algebraic equations (DAE) with n second
order ordinary differential equations (ODE) and m = 24 independent algebraic con-
straints. M is the mass matrix of the system, Q is the generalized force vector, A is
the vector of the Lagrange multipliers, ® is the kinematic constraint vector and ®,
is the Jacobian constraint matrix. Finally, q and q represent the generalized veloc-
ity and acceleration vectors, respectively. <I>£)\ are the generalized forces associated
with the imposed constraints.
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Figure 1: 2D biomechanical model of the human body.

A kinematic analysis allows us to calculate the generalized positions q and their
time derivatives q and q at each time instance. In order to solve the dynamic analysis,
the well known matrix-R formulation is used [22]. The equations are reduced to their
state-space form, i.e., their independent coordinates z € RY. Specifically, the chosen
independent coordinates z are the angular variables (ap, ..., a11) together with the
position of pelvis (also representing the hip joint), point Py (x4,y4) in Fig. 1(b).
Thus, the number of independent coordinates is ¢ = 14. Note that the independent
velocities are chosen from the dependent ones: q = {q¢,q'} = {q%, 2z}, where the
superscripts ‘d’ and ‘i’ indicate dependent and independent coordinates.

Using matrix-R formulation, the equations of motion can be written as [22]:

R'MRz = RT(Q, — MRz) + Q,, (2)

where Q, € R™ is the known generalized force vector (in this work, the gravitational
forces) and Q, € RY is the the driving forces and torques vector. Moreover, matrix
R € R™9 can be calculated as [22]:

R | (%] ®)

g

where I, € R9*9 is the identity matrix and the superscripts indicates the terms
of ®, related to the dependent and independent coordinates:

®ga= (wey { &) @
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This formulation is used to carry out both inverse and forward analyses. In
an IDA the system is solved in order to obtain the driving forces and torques
Q.. = Qpa: the analysis provides the required actuation in the form of general-
ized forces associated to the independent coordinates z. In a FDA, motor efforts are
the generalized forces computed by the IDA plus the controller dynamic contribution:
Q.. = Qipa + Qe Eq. (2) can be easily solved for the independent accelerations Z
and the nonlinear ODE system must be numerically integrated to obtain zgps and
ZFDA-

It has to be noted that the reference or base segment of the model is the trunk,
whose global position is described by 3 generalized coordinates: an absolute an-
gle, ap, and the absolute position of the hip joint (x4,v4). The other coordinates
correspond to relative angles between segments (s, ...,a11). Therefore, using the
explained parameterization, Qp, contains an external wrench (two components of
a force and one torque) applied to the trunk and 11 torques associated with joint ac-
tuation. These generalized forces do not correspond to the actual external reactions
and internal joint torques, but they can be easily transformed using the procedure
explained in [23]. Moreover, since Q is the controller output vector and it is also
related to the independent coordinates, it contains the external wrench and the joint
torques that are needed to counteract the deviation of the controlled variable z from
the prescribed reference z,.s.

Regarding ODE integration, a fixed-step solver (‘ode4’ from Matlab) and a variable-
step one (‘ode23’ from Matlab) are compared. In comparison to the fixed-step solvers,
the variable ones guarantee a consistent level of accuracy during all time. Sharp
changes in the solution can be coped by the variable step solver by reducing the time
step, where fixed-step solvers may overrun the problematic zone. About ‘ode23’ it
has to be said that it dynamically adjusts the step size to meet the error tolerances
that are specified, which is 107°) in our case. It solves nonstiff differential equations
with the method based on Runge-Kutta(2,3) which is explained in detail in [24]. It is
a one-step solver and efficient at crude tolerances and as well in the presence of mild
stiffness. The difficulty of the variable-step solver in this work is that the reference
data (such as reference motion and actuator torques and forces), which come from
the laboratory measurements, and inverse dynamic calculations are only available
in fixed time steps. Since the solver adjusts the step size dynamically during the
simulation, the reference values need to be evaluated at any specific chosen time.
In order to obtain continuous reference data, linear interpolation has been used. In
contrast ‘oded’ is a fixed-step integrator which handle the availability of the reference
data in fixed time steps. It is a non-adaptive solver using as well the Runge-Kutta
method of order 4.



3. Control System Design

As said before, two different control strategies are used: a proportional derivative
(PD) controller and a computed torque control (CTC) with feedback linearization.
The second order ODE system from Eq. (2) will be expressed in nonlinear state space
representation. The multibody system which needs to be stabilized, is a nonlinear
‘square’ multiple input multiple output (MIMO) system (i.e., with the same number
of inputs as outputs). In general, affine nonlinear systems can be expressed as:

h

where, in general, u € R is the system input, y € R™° the system output and
x € R?™ the state vector containing nc coordinates and nc velocities in this case
[25]. The vector fields f(x) and h(x), and the matrix g(x) are nonlinear functions
of the state space vector x which is described as:

F(x,u) + g(x) u

h(x’) (5)

x ={z1,..., Tne, il,...,inc}T (6)

For the multibody system defined previously, the state vector contains the inde-
pendent coordinates z € RY as well as the independent velocities z € RY

x:{;}:{zl,...,zg, 21,...,2'9}T (7)

thus, being nc = g, The input vector u € RY contains the forces and torques that
are needed to generate the reference motion.

u=Q, =Qps+ Q¢ (8)

and the output vector y € RY is defined as the vector of independent coordinates z.
Note that, since all the DOF are controlled mc = nc = g = 14.

Using Eq. (2), the nonlinear state space representation for a second order multi-
body system in matrix-R formulation can be described as:

[z E A .\ 0, Q
T 7z ) | R"MR) [RT(Q, - MR2)| (RTMR)~! | ™™

y =z={z, ..., zg}T

(9)



3.1. Proportional Derivative Control

The first control approach is a PD control. Additionally to the driving forces and
torques obtained from the IDA of the reference motion, the PD control provides the
necessary forces and torques to reproduce that motion in forward dynamics. The
input vector with the driving forces and torques can be achieved by:

Q.. = Qs + Qpp = Qpa + Kpe, + Kgé, (10)

where K, is the stiffness matrix, Ky is the damping matrix, e, = z,s — z is the
tracking error of the independent coordinates, and &, is the time derivatve of e,.

Large gain values in matrix K, lead to a higher response of the controller to
potential disturbances. However, if this gain parameters are chosen too high, the
system might oscillate and become unstable. The derivative part of the PD control
(related to the gain matrix K,) anticipates the future behavior of the tracking error
since the response of the derivative component is proportional to the rate of change
of the error signal [26]. The adjustable derivative time in matrix Ty (K4 = K, T,)
is the time interval by which the rate action advances the effect of the proportional
control action [26]. Hence, the derivative gain matrix has an anticipating correcting
effect. It can reduce the magnitude of overshoot, eliminates oscillations and enables
the system to respond faster to external or internal disturbances. The gain matrices
are chosen diagonal and have the following expressions:

Kp,l O td,l 0 Kd 1 0
0 K,, 0 tag 0 Kagq

(1)

Note that the choice of null off-diagonal terms in K, and K is for mathematical
simplicity [27]. Although the presented methodology could include non-zero off-
diagonal terms, as far as the authors know there is not a systematic criterion for
selecting them.

In order to avoid oscillations and minimize overshoot, the gain parameters K, ;
and K ; have to be chosen carefully. The main problem is that the gain parameters
of each controller (we have 14 controllers) cannot be easily determined since the
whole dynamics of the system is strongly coupled. Additionally, the system is highly
nonlinear and it does not exist, a priori, techniques for defining the gain parameters
for a desired performance. For this reason, a kinematic perturbation is used for
tuning PD gains and, therefore, different sets of gains are discussed in the results
section.



3.2. Computed Torque Control

The computed torque control with feedback linearization is an approach to non-
linear control design. The main idea is to algebraically transform a nonlinear system
into a linear one, so that linear control techniques can be applied (feedback lineariza-
tion). In addition, due to this transformation, the new system can be controlled with
mc linear independent controllers.

Roughly speaking, the CTC consists in finding an invertibility, or input-output-
decoupling matrix g(x) —~where g(x) is non-singular, or fully ranked (rank g(x) =
mc)— and defining the input vector:

u=g ' (x)(v - £(x)) (12)

where v € R™¢ is the synthetic input vector and f the vector containing the Lie
derivative terms. Hence, the system from Eq. (5) is transformed into a decoupled
set of linear equations that can be controlled using linear control techniques. It has
to be mentioned that, in this case, the feedback linearization is only applied to the
dynamics decribing the velocity in Eq. (9). Using Egs. (9) and (8), the derivatives
of the mc = g outputs can be expressed as:

Z1
= (R"™™R)! |[RT(Q, — MRz)| + (R"TMR)™! [Qcre + Qupa]  (13)
N——

/

Zg ?E; ) g(x)

3

where f(x) and g(x) are the terms f(x) and g(x) related to the acceleration vector
z in Eq. (9). Eq. (12) can be rewritten as:

Qmpa + Qore = RTMR(V - f(X)) (14)

Hence, using Eqs. (13) and (14) with the synthetic input vector v € R, the nonlinear
system in Eq. (9) can be transformed into a new decoupled system, which is fully
linear:

(15)

This system is a set of identical g dynamics with relative degree equal to two.
Precisely, the full stability of the system is guaranteed since two times the input

10



vector size corresponds to the total order of the system 2g, so that the stability of
the internal dynamics is proved [25].

As it is shown in Eq. (15), the new linear system contains mec decoupled second
order differential equations. Hence, each independent coordinate can be treated
separately, and, in order to design the system’s controller, it is sufficient to analyze
just one equation of the system and to adopt the control adjustments of this equation
to the other ones. The linearized system for one output coordinate is given by:

Z=w (16)

or in state space representation:

{}@{}+@ (17)

The eigenvalues of the matrix A are the poles of the system, and they define the
dynamic behavior in terms of stability and performance. The poles are the roots of

the characteristic polynomial:
[(sI—A)| =0 (18)

where I is the identity matrix and s the Laplace operator. Eq. (18) shows that both
roots are zero (s; = s9 = 0). The stability is guaranteed if Re(s) < 0 for all poles.
Therefore, the system is unstable without applying a control approach.

An unstable system can be stabilized by a control feedback. But before apply-
ing a suitable control strategy, the controllabilty of the system has to be proven.
The system, expressed in Eq. (17), is completely state controllable if and only if
the vectors B and AB are linearly independent, or what is the same the (2 x 2)
controllability matrix CO is of rank 2 [26], where

CO — [B|AB] = H ' H (19)

Since the rank of the controllability matrix CO in Eq. (19) is 2, it is proven that
the unstable system in Eq. (17) is completely state controllable.
The synthetic input v is then chosen following a PD architecture [25]:

v = éref + Kde + er (20)

where Ky and K, are the control parameters and the tracking error e and its time
derivative é are expressed, for each controller, as:

e=12e —2 and €=Z.—2 (21)

11



with € = Z,.; — Z, the error dynamics can be expressed in state space representation

BN EEA &

/

A%
The eigenvalues of the matrix Ag are the roots of the characteristic polynomial,
‘ (SI — AK) |I
s(s—Kqg)+K,=0 (23)

which are, in general, complex, s; 9 = 0 % jwg, or in terms of the control parameters,

K, K;\*
S12 = — Td + (Td) — Kp (24)

The stability of the dynamics is guaranteed if the real part o is negative, which
implies that the gains must fulfill the inequality

K, K;\?

together with K; > 0. In addition, oscillations (and consequently, overshoot) appear
if the roots of Eq. (24) have imaginary part. The gain tuning consists in to setting the
control gains in order to obtain a certain performance. In this paper, the following
design has been considered:

1. No overshoot: the roots s; and s, should not contain an imaginary part, which

implies
Ky > 2/ K, (26)

2. Settling time: Two alternatives exist for tuning the control gains for a second
order system with real poles. A first approach is to select Ky and K, such
that one real root, o, dominates the other one, o5, with o9 = boy. Then, the
dominant pole is related with the settling time with [25]

ts =4/ |0 (27)

Alternatively, with K; = 2,/K,, a critical damped response is obtained and
Eq. (23) has one root with multiplicity two, s12 = 0. The settling time for a
critical damped second order systems is [25]

t, ~ 5,834/ |o] (28)

12



In the following, the approximation in Eq. (28) has been adopted (which involves
K, = 2\/Fp). The settling time ¢4 is the time that the controller will need to reach
and stay within 2 % of its final value. It is worth to notice that the selection of the
poles is also a compromise between rapidity of the response of the error vector and
the sensitivity to disturbances and measurement noises [26]. We propose a critical
damped response with ¢, = 0,1 s. Since the laboratory data are collected at 10ms
and the gait cycle time is 1,3 s, the proposed controller will react within less than
10 % of the gait cycle. Using these conditions, the gain parameters are fixed at
K, = 3403 and K4 = 117.

As explained in the beginning of this subsection, the gained information for the
control design of one independent coordinate can be adopted to the other (mc — 1)
equations of the linear decoupled system in Eq. (15). Consequently, mc independent
controllers using Eq. (20) have to be applied to the transformed system. In matrix
formulation it can be expressed as:

vV = iref + Kde + er (29)

The tracking error vector and its time derivative are the same vectors defined for
the PD control. The gain matrices are also chosen diagonal as in PD control (Eq.
(11)) and the determined values of K, and K, are used for each individual controller.

4. Methods

4.1. System Perturbations

As mentioned before, linear techniques provide tools for choosing CTC control
gains according to a desired response. However, these rules are not effective for the
PD control. In order to choose the proper gains for the PD controller a set of FDA
are computed. The idea of these simulations is to extract some features of process
dynamics and determine control parameters from the features. The FDA requires
exact initial values of the independent coordinates z..s and independent velocities
Zrer- What is proposed is a PD tuning based on using a wrong initial state vector.
Providing wrong initial values, the controller should be able to react to the fault
case and guide the motion of the system until it follows again the reference motion.
The initial value of one coordinate is perturbed at each simulation: z;(t = 0) #
Ziref(t = 0) (14 simulations are carried out perturbing each independent coordinate).
This initial error allows us to study the influence of the gain parameters on the PD
controller response and, therefore, it allows us to choose the parameters according
to the desired behavior.

13



In order to study the robustness of the controllers, another simulation scenario is
investigated. The external wrench (two force components and one torque component)
obtained through IDA (Q;p,) is artificially perturbed at each time step. A random
value is added to each wrench component according to a normal distribution with
mean equal to 0 and standard deviation equal to 15%, 25% and 50% of the component
actual value. This simulation takes into account an hypothetical use of a contact
model where the forces can change abruptly from one instant to another. Usually, in
order to reproduce the interaction between the subject and the ground, in an FDA
feet are modeled by simple geometries (e.g., cylinders, spheres or ellipsoids) and
a foot-ground contact model based on nonlinear spring-dampers is used [28]. The
contact model in an FDA introduces uncertainties in the contact wrench and the
dynamic contribution is extremely sensitive to the assumed stiffness and damping
values. Therefore, it can destabilize the system. The artificial perturbation proposed
aims to test this effect, since the control strategies are not aware of the external force
changes acting on the system.

4.2. Error Analysis

In order to compare the controllers, the root-mean-square error (RMSE) is in-
troduced in Eq. (30). It measures the difference between a reference independent
coordinate z.f; and the corresponding predicted independent coordinate by means
of FDA zppa ;. The mean of the squared error is calculated over the total simulation
time T with a total number of time steps K.

T
1
RMSE(z;) = e E (Zref,i — 2FDAi)? (30)
=0

where the total number of time steps is K = % +1

Finally, the normalized root-mean-square error (NRMSE) is obtained, which
refers each RMSE value to the range of the independent coordinate to enable a
normalized comparison.

RMSE(z;)

E

NRMSE(z) - 100 (31)

max __ ,min
ref,i ref,i

Moreover, also the control torque range and the simulation time are used to
compare the performance of the two control strategies. The range of the control
torque is defined as the difference between maximum and minimum torque applied
to the model:

14



AQc., = |QE% — QX (32)
Note that the NRMSE and the control torque range are defined for each degree
of freedom (¢ = 1,...,14). In some cases, and in order to have an idea of the global

behavior of the system, the mean, the standard deviation and the maximum of the
torque in absolute value are calculated.

5. Results and discussion

5.1. Numerical Integration

The original results of the IDA are used as input of the FDA and the motion is
obtained. In a first attempt, the FDA was computed at the laboratory acquisition
data frequency (At = 10 ms). Because the IDA was carried out in order to determine
the actuating forces and torques Qp, that produce a certain reference motion zf,
it is expected that the results of the FDA, using these actuating forces and torques
(Q,, = Qpa) will ideally reach the original motion (without any controller).

However, using this integration interval, neither the fixed-step solver (‘ode4’)
nor the variable-step one (‘ode23’) properly reproduce the desired movement. The
multibody system became unstable and only 9% of the gait cycle could be simulated.
At this point, the IDA needed to be recalculated using a smaller time step. The use
of spline functions to define the motion allowed obtaining kinematic information at
any instant. Specifically, a time step At = 1 ms was chosen and the IDA results were
again calculated.

Another FDA was computed using At = 1 ms. The results obtained using ‘ode4’
and ‘ode23” were similar, we could simulate up to 66% of the gait cycle. However,
differences appeared on the simulation time: ‘ode23’ took 19,19 s and ‘ode4’ needed
3,4 s to compute the same gait cycle, i.e., the results obtained using ‘ode23’ took
more than 5 times the simulation time used for ‘ode4’ integrator. In these simulations
the obtained motions were really similar in both cases (no significant differences
appeared on NRMSE), and therefore, the fixed-step solver was selected to perform
further analyses.

Fig. 2 shows the hip joint trajectory and the lower limb joint flexion-extension
angles (ankle, knee and hip joints of both legs). The reference motion is represented
using a blue curve and the FDA results when the fixed-step solver is applied are
plotted in green. Fig. 2 shows that during about 50 % of the cycle both curves
overlap; the two motions are similar. However, after that point, the blue and green
curves begin to differ and the obtained motion does not correspond to the captured
gait. At 66% of the cycle the simulation crashes.
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Figure 2: Evolution of trunk configuration and lower limb joint angles in the forward dynamic
simulation of the gait motion without any control.

These simulations show that when the results of the inverse dynamics are used
as input data for the forward dynamic analysis the obtained motion does not equal
the reference one z.s. From now on, all the integration results are obtained using
this fixed-step solver ‘ode4’, with an integration time step of 1 ms.

5.2. Initial condition perturbation

In order to investigate the controllers behavior a wrong initial state vector x(t =
0) is used. The results presented in this section are obtained when the perturbation
is applied to the right knee joint angle (ay). Instead of the exact initial state value,
this coordinate is perturbed adding half of the range of its motion.

As explained previously, the gain parameters of CTC were chosen in order to
impose a settling time of 0,1 s (see section 3). However, it was not possible to
perform a similar study for the PD control and several sets of PD control parameters
had to be chosen. In Table 1, three selected sets of control parameter adjustments
are defined.

In Fig. 3 the results obtained using the three PD controllers are plotted in black,
the CTC response is plotted in red, and the reference motion is plotted in blue. The
applied control torques are shown in Figs. 3(c) and 3(d).
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Table 1: Performance indicators values depending on adjusted control parameters K, and K, of
PD and CTC controllers. The wrong initial value for as is used.

Control Control parameters AQc,, NRMSE(«a;) Settling  Simulation

time time
K, [fm] K, [Rzme] [Nm] (%) toos [s] tsim [3]
PD1 1000 10 706,74 4,57 — 7,3
PD2 100 10 65,42 10,09 0,51 7,02
PD3 100 1 85,72 8,55 — 6,9
CTC 3403 117 1021,6 6,25 0,1 4,36

It can be seen that all the controllers are able to react to the wrong initial values
and guide the motion back to the desired trajectory, however the performance of
each controller is different. Fig. 3(b) shows that PD1 (the controller with a higher
parameter ) is able to correct the initial error faster than PD2, PD3 and CTC
controllers. However, as it can be seen in the same figure, neither PD1 nor PD3 are
able to stabilize the motion, the error oscillates around the response and it doesn’t
stay within 2% of the final value: it just passes through that range on its way from
one oscillation to the next. Therefore, a settling time does not exist (it is indicated
using — in Table 1). It has to be said that their overshoot decrease along time and the
oscillation amplitude at the end of the cycle is less than 5%. However, the defined
settling time cannot be calculated for these controllers. Choosing K, values higher
than the ones in Table 1 leads to instabilities and the system performance degrades.

For the CTC controller (red curve), due to the use of the critical damped response,
the controller is correcting the error without any overshoot. An NRMSE of 6,25% is
obtained. Moreover, although the order of magnitude of the simulation time is the
same for all the studied cases, CTC presents the faster behavior.

Regarding the control torque necessary to drive the motion, PD2 and PD3 have
the lower values, 65,42 Nm and 85,72 Nm, respectively (by contrast they have the
maximum NRMSE, 10,09 % and 8,55%, respectively). Figs. 3(c) and 3(d) show the
the control torque applied along time —Fig. 3(d) is a zoom of the dashed box in Fig.
3(c)—. The higher values are present at the beginning of the simulation, when the
controllers must reduce the largest errors. After 10% of the gait cycle all control
torque magnitudes are less than 10 Nm and they tend to 0. In this study we are not
concerned with the bio-physical mechanism used to provide the control torque (the
muscle), we are focused on the way to virtually simulate it. Therefore, the magnitude
of these torques are not used as a criterion to choose the best controller.

However, it has to be pointed out that some of these torques could not be exerted
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by any biological actuator. This is for example the case of the torque needed for the
CTC controller (AQc.a, = 1021,6 Nm, see Table 1). The maximum torque appears
at the beginning of the simulation, when the controller has to correct the wrong
initial value for coordinate ay see Fig. 3(c). That control torque is then reduced
substantially, reaching totally affordable applied control torque values from the 10%
of the gait cycle until the end of the simulation.

This study shows that if low magnitude control generalized forces were required,
the PD2 controller could be considered the most adequate. However, its high NRMSE
(10,09%) shows its lack of capacity to reproduce accurate human walking (see Table
1). Note that when a settling time of 0,51 s (the same as in PD2, see Table 1) is
imposed to the CTC, the generalized torque is reduced to 32,1 Nm and a NRMSE
of 7,43% is obtained. Therefore, when using the CTC controller, it is possible to
reach the same settling time as in PD2 with a lower control torque and with more
accuracy with respect to the reference motion (lower NRMSE).

The worst behavior has been detected when using PD3: a settling time cannot
be calculated, the NRMSE is higher than in PD1, and the control torque range is
higher than in PD2. Therefore this controller has been discarded for the rest of the
study.

The behavior of the explained controllers can not be extrapolated to the remaining
independent coordinates: each coordinate presents a specific performance. Fig. 4
shows the response obtained for the trunk configuration coordinates and for the lower
limb joint angles. The reference motion is plotted in blue, the one obtained using
PD1 and PD2 in black and the CTC curve is plotted in red.

As it can be seen in Fig. 4, the initial error only appears on the right knee joint
angle. The rest of coordinates start at its reference value. However, PD controllers
are not able to drive properly the prescribed motion of some coordinates: the error on
the vertical coordinate of the hip joint increases along time; neither PD1 nor PD2 are
able to follow the desired motion of the absolute angle of the trunk; moreover, some
errors appear at the beginning of the cycle for the right and left hip joint angles. For
the PD controllers, this effect is related to the coupled system dynamics: an error on
a single coordinate effects all the system, moreover, the gains cannot be separately
tuned, since a change in K,; or K,; affects the behavior of all the controllers.

In contrast, very accurate dynamic results can be achieved when the CTC is used:
the coordinates follow the reference motion as desired (red curve in Fig. 4). An error
on the knee coordinate has no effect on the other coordinates.

The performance indicators used above can be calculated for each independent
coordinate. For the sake of simplicity (note that there are 14 actuators) the mean
NRMSE, its standard deviation (SD) and the maximum value obtained are sum-
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Figure 3: Evolution of the right knee joint angle (a3) and applied control torque related to this
coordinate. A wrong initial condition for as is used. (a) Joint angle evolution, (b) Absolute joint
angle error, (¢) and (d) Applied control torque

marized in Table 2. Moreover also the mean of the controller torques, its standard
deviation (SD) and the maximum value obtained are shown in this table.

The dynamic effect of the controllers are force acting on the hip joint (expressed
in N) and a set of torques acting between segments (expressed in Nm). In order to
be consistent and not to mix magnitudes, the values in Table 2 just take into account
the 12 angular controllers (they present indeed the maximum error values).

As expected, comparing the three controllers it can be seen that the CTC shows
all around the best performance: it is the controller with the lowest NRMSEs in
terms of mean, SD, and maximum values; and, moreover, the CTC mean NRMSE is
one order of magnitude lower than the one of PD controllers. Only CTC can drive
properly the motion with an mean NRMSE of 0,57% with the desired settling time of
0,1 s. The maximum NRMSE of the CTC (6,25%) is the same value as the NRMSE
of Table 1: the maximum error appears on the knee ankle joint (where the error
occurs). However, the maximum NRMSEs of PD controllers are higher than the
NRMSE (ag) in Table 1: the largest error appears on a non-perturbed coordinate.

PD2 presents a lower control torque range than PD1 (in mean and also in SD
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Table 2: Global comparison of both control strategies -PD and CTC- with wrong initial value at
«g. Statistical results obtained for the 12 angular controllers.

Control Mean SD Max Mean SD Max
NRMSE NRMSE NRMSE AQc AQc AQc
(%] %] (%] (Nm]  [Nm]  [Nm]
PD1 3,02 3,79 14,21 135,26 186,85 706,74
PD2 3,51 5,11 18,24 11,01 1727 6542
CTC 0,57 1,66 6,25 434,45 758,29  2054,1
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Figure 4: Evolution of trunk configuration and lower limb joint angles. Comparison of both control
strategies —PD and CTC- with wrong initial value at as
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value). Its maximum control torque is one order of magnitude less than PD2 and
two orders of magnitude less than CTC. However, both PD controllers are not able
to correct the error of some coordinates: they do not stay within 2% of the final
value and there is no settling time for some coordinates (vertical component of hip
joint, absolute trunk angle and hip joint angles). In contrast, PD1 features a lower
mean, SD and maximum NRMSE value.

Since the tracking error behaves as a critically damped second-order system, it
seems reasonable to assume that CTC will always outperform a simple PD algorithm.
However, note that CTC technique requires the knowledge of many physiological pa-
rameters (for the feedback linearization process), but the PD controller does not. So,
in this study it was also interesting to investigate how a wrong (but reasonable) es-
timation of physiological parameters affected both controllers. Under this condition,
CTC still performed better than the PD controller, which was not known a priori.

This initial perturbation test has been used in order to tune the PD gain param-
eters in the sense that different gains has been imposed and analyzed. The results
show that PD1 is neither better nor worse than PD2. The use of one or other will
depend on the application. Therefore, in the next section both controllers will still
be used and compared.

5.8. Control Behavior in non-perturbed FDA of Human Gait

Using the above controllers (PD1, PD2 and CTC) a new FDA is carried out.
In this new case, the wrong initial condition is not applied. Since no uncertainties
are present, it is expected that the controllers will be able to properly drive the
system. However, significant errors appear on the vertical coordinate of the hip joint
and on the absolute trunk angle coordinate when PD controllers are used. Fig. 5
shows the results for these two specific coordinates. Black curves represent the PD
controllers, the red one is related to CTC and the reference motion is plotted in blue.
Although, the biomechanical model is able to follow the prescribed motion, PD1 and
PD2 cannot drive accurately these coordinates. In contrast, when CTC is applied,
the controlled variables are concurrent with the reference variables.

As expected the error in CTC remains close to 0, but what is interesting to see is
that the PD controllers the error increases along the gait cycle, and no settling time
can be calculated. Regarding the vertical component of the hip joint, PD1 presents
an NRMSE of 3,08% and a AQ¢ of 4,27 N. Instead, the NRMSE when PD2 is used
is 6,37% and the AQc = 1,3 N. For the absolute trunk angle, the NRMSE of PD1
is 2,92% and it requires a AQc of 18,87 Nm. In contrast, PD2 presents a higher
NRMSE (8,45 %) and a lower AQ¢ (3,02 Nm).

As in the previous subsection, in order to evaluate the global behavior of the
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Figure 5: Kinematic results for the vertical coordinate of the hip joint (a) and (c); and for the
absolute trunk angle (b) and (d). Results obtained without applying any perturbation.

system, the mean, SD and maximum values of the NRMSEs and the control torque
range are calculated (see Table 3). The maximum NRMSE for the PD controllers
shown in Table 3 corresponds to the absolute trunk angle. The CTC control approach
features again a better performance than the two PD controllers since its mean
NRMSE is one magnitude order lower than the best PD control (PD1). Regarding
the control torque range, CTC applies higher torques. The simulation time is similar
for all three cases.

As seen in Fig. 5, neither PD1 nor PD2 are able to exactly reproduce the consid-
ered coordinates. However, in general terms, the behavior of PD1 seems to be more
appropriate than PD2: Its NRMSEs are lower than in PD2 results (see Table 3). In
contrast, higher control torques and forces must be applied.

Note that the obtained performance indicators in this new simulation are, in
general, one order of magnitude lower than the results for the previous case (see
Table 2), and they are two orders of magnitude lower for the CTC. In this second
case, no external perturbations are added to the system state and, therefore, the

controllers only need to react to the unavoidable simulation divergences between
FDA and IDA.
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Table 3: Global comparison of both control strategies -PD and CTC- without any applied pertur-
bation. Statistical results obtained for the 12 angular controllers.

Control Mean SD Max Mean SD Max Simulation
NRMSE NRMSE NRMSE AQc AQc AQc time
(%] (%] (%] [N [Nm|  [Nm] [s]
PD1 0,38 0,75 2,91 5,31 5,24 18,87 7,76
PD2 1,47 2,16 8,44 1,91 1,47 5,45 7.3
CTC 0,04 0,02 0,07 7,71 8,61 27,51 6,59

5.4. External wrench perturbation

The external wrench, obtained from the IDA (Q;p,), is perturbed and used to
test the capacity of the controllers to keep the human motion stable against external
disturbances. Specifically, three different forward dynamic simulations are carried
out for each considered controller (PD1, PD2 and CTC). In those simulations, the
external wrench (two force components and one torque component) related to the
body-environment interaction is modified according to a normal distribution with
0-mean and standard deviation equal to 15%, 25% and 50%, respectively, of the
component actual value (Error SD in Table 4).

Table 4 shows the obtained values. PD1 can drive the motion and the obtained
errors are similar to the other studied cases. However, PD2 control is not able to
follow the prescribed motion. For these three simulations the NRMSEs are greater
than 25%. Using PD2 the obtained motion significantly differs from the original one.
It must be highlighted that since the K, values of PD1 are higher than those of PD2,
the control torque applied by PD1 can also be higher. Therefore, PD1 is able to
react faster to these disturbances and therefore it performs better than PD2.

The fundamental difficulty of using the designed PD controllers is that the con-
trol system has no direct knowledge of the process and the feedback signals are
multiplied with constant parameters. This control strategy has difficulties in the
presence of non-linearities (changing process behavior) and has a delay responding
to large disturbances. Something that becomes evident in these last simulations for
PD2. Moreover, since the control parameter gain matrices are chosen diagonal, these
controllers do not take possible coupling among DOF into account.

Regarding the CTC, this controller drives properly all the coordinates. In the
worst case, the mean NRMSE is less than 0,25%, so the obtained motion is close to the
original one. Note that the CTC control approach and therefore, the implementation
of the feedback linearization, is not aware of any uncertainties applied to the model
parameters and does not consider any disturbances acting on the plant. The system
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Table 4: Global comparison of both control strategies -PD and CTC- when the IDA external wrench
is perturbed. Statistical results obtained for the 12 angular controllers.

Error Mean SD Max Mean SD Max Simulation
SD NRMSE NRMSE NRMSE AQc AQc AQc time
(%] (%] (%] d [N [Nm|]  [Nm] [s]
PD1
15 0,33 0,56 2,2 5,57 5.1 16,04 5,22
25 0,41 0,72 2,82 6,92 6,96 23,32 5,13
50 0,78 1,61 6,20 11,39 13,68 49,39 4,75
PD2
15 29,61 107,04 401,52 6,76 16,32 63,32 5,22
25 48,95 178,29 668,39 10,26 27,36 104,9 5,14
50 98,67 357,42 1340,37 19,84 54,18 210,90 5,14
CTC
15 0,08 0,08 0,33 34,7 74,74 271,36 5,25
25 0,12 0,13 0,54 40,4 83,31 276,51 5,01
50 0,23 0,27 1,08 56,27 115,671 346,16 4,93

behavior when a random perturbation is applied to the system is not known a priors.
However, CTC algorithm is able to follow the prescribed motion even with significant
external errors. Logically the control torque range increases with higher errors since
it has to correct larger disturbances. The IDA torque fault case involves, in addition,
high angular acceleration errors.

This test allows us to study the capacity of the controllers to restore and main-
tain upright posture against external perturbations, and therefore, knowing in what
manner stable gait patterns are recovered in response to external perturbations. The
results prove the robust performance of the CTC control against the PD counter-
part. The CTC control approach is highly robust against dynamic uncertainties
and also to kinematic errors. In contrast, the PD behavior is very dependent on
the gain parameters and could not be able to follow a reference in presence of high
uncertainties.

Finally, neither the percentage of error on the external wrench nor the type of
control used to drive the motion have an effect on the final simulation time.

6. Conclusions

In this work, inverse and forward dynamic approaches have been implemented
for a human gait analysis using a 12 segment whole-body 2D model with 14 DOF.
The IDA is computed with the aim of obtaining a set of forces and torques dy-
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namically consistent with the captured motion without adding any residual reaction.
These forces and torques are then applied to the multibody system when the FDA
is computed.

Different numerical integration methods are introduced in order to carry out
the forward dynamic simulations (‘ode4’” and ‘ode23’ from Matlab). In this study
the kinematic results obtained for both integrators were really similar (no differences
appear on NRMSE). Comparing their performances, the fixed-step solver ‘ode4’ from
Matlab performed 5 times faster than the variable one (‘ode23’). Hence, the further
forward dynamic simulations have been carried out using the fixed-step integration
solver ‘ode4’.

Using those input forces and torques without any control the simulation drift
appears at around 50% of the gait cycle. Due to numerical errors in the integration
process and the unstable character of the human motion, control techniques must
be applied. In order to see the effect of the choice of the controller on the accuracy
of the simulated motion and the control torques needed during the forward dynamic
simulation, two different control approaches are introduced and designed: a propor-
tional derivative control and a computed torque control using feedback linearization.
The gain parameters have been investigated and they have been chosen according
to the control response. Three different sets of K, ; and K;; have been used for the
PD controller. NRMSE and settling time have been used to compare the controllers
behaviors.

The main advantage of the PD control is that it is very simple to implement
and involves very few computations compared to the nonlinear dynamic equations.
However, the 14 controllers are strongly coupled: a change in the gain parameters
of one controller effects the whole dynamics of the system. In contrast, one of the
most important advantages of the CTC is that the obtained multibody system is fully
linearized. Therefore, linear control techniques can be applied. Moreover, the desired
closed loop pole locations determine the speed and the damping of the response. In
particular, the settling time can be set in order to dictate the response of the control
system.

When a wrong initial position is used in order to determine the controller gains,
the study of the behavior of the knee joint shows that neither PD1 nor PD2 are
able to stabilize the motion with a settling time within one gait cycle. They present
oscillations higher than 2% of its final desired value. In contrast, when CTC is used,
very accurate dynamic results are achieved with a settling time of 0,1s although bigger
control torques are needed in this case. However, note that the aim of the paper is not
to obtain physiologically realistic torques, but a robust and computationally efficient
control system able to stabilize the forward dynamic simulation of human gait.
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Applying no errors to the system, although all the control approaches are able to
follow the reference motion, some important differences appear in some coordinates
when the PD controllers are used. The vertical hip joint position and the absolute
trunk angle present higher errors than the other coordinates. These errors cannot be
reduced increasing gain parameters. The dynamics of the system is highly coupled
and a change in one parameter affects the behavior of the other coordinates. In
contrast, CTC control performs without overshoot, faster and more accurately with
a factor of 10 as compared with the PD control.

The PD control approach has its limitations in the case of external wrench per-
turbations. The results of the forward dynamic simulation fails depending on the
gains used. The CTC control, instead, is able to guide the human motion during the
whole simulation following the reference data with a highly accurate response.

This work points out that, although there are a lot of papers in the literature
using a PID controller for forward dynamic analysis of human gait, this is not the
best approach as seen from the results obtained in the different simulation scenarios.
In summary, it can be pointed out that the CTC control with feedback linearization
is a powerful control system for nonlinear multibody systems. The results show that
it is a tool with high potential for human motion control since its performance is
very robust. Authors suggest that this tool might have a high potential in forward
dynamics-based algorithms for human motion prediction. In contrast, the use of PD
control could fail to restore and maintain upright posture under certain conditions.
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