5,862 research outputs found

    Scalable Projection-Free Optimization

    Get PDF
    As a projection-free algorithm, Frank-Wolfe (FW) method, also known as conditional gradient, has recently received considerable attention in the machine learning community. In this dissertation, we study several topics on the FW variants for scalable projection-free optimization. We first propose 1-SFW, the first projection-free method that requires only one sample per iteration to update the optimization variable and yet achieves the best known complexity bounds for convex, non-convex, and monotone DR-submodular settings. Then we move forward to the distributed setting, and develop Quantized Frank-Wolfe (QFW), ageneral communication-efficient distributed FW framework for both convex and non-convex objective functions. We study the performance of QFW in two widely recognized settings: 1) stochastic optimization and 2) finite-sum optimization. Finally, we propose Black-Box Continuous Greedy, a derivative-free and projection-free algorithm, that maximizes a monotone continuous DR-submodular function over a bounded convex body in Euclidean space

    Stochastic Frank-Wolfe Methods for Nonconvex Optimization

    Full text link
    We study Frank-Wolfe methods for nonconvex stochastic and finite-sum optimization problems. Frank-Wolfe methods (in the convex case) have gained tremendous recent interest in machine learning and optimization communities due to their projection-free property and their ability to exploit structured constraints. However, our understanding of these algorithms in the nonconvex setting is fairly limited. In this paper, we propose nonconvex stochastic Frank-Wolfe methods and analyze their convergence properties. For objective functions that decompose into a finite-sum, we leverage ideas from variance reduction techniques for convex optimization to obtain new variance reduced nonconvex Frank-Wolfe methods that have provably faster convergence than the classical Frank-Wolfe method. Finally, we show that the faster convergence rates of our variance reduced methods also translate into improved convergence rates for the stochastic setting

    Boosting Variational Inference: an Optimization Perspective

    Full text link
    Variational inference is a popular technique to approximate a possibly intractable Bayesian posterior with a more tractable one. Recently, boosting variational inference has been proposed as a new paradigm to approximate the posterior by a mixture of densities by greedily adding components to the mixture. However, as is the case with many other variational inference algorithms, its theoretical properties have not been studied. In the present work, we study the convergence properties of this approach from a modern optimization viewpoint by establishing connections to the classic Frank-Wolfe algorithm. Our analyses yields novel theoretical insights regarding the sufficient conditions for convergence, explicit rates, and algorithmic simplifications. Since a lot of focus in previous works for variational inference has been on tractability, our work is especially important as a much needed attempt to bridge the gap between probabilistic models and their corresponding theoretical properties
    • …
    corecore