8 research outputs found

    Towards Optimal Subsidy Bounds for Envy-freeable Allocations

    Full text link
    We study the fair division of indivisible items with subsidies among nn agents, where the absolute marginal valuation of each item is at most one. Under monotone valuations (where each item is a good), Brustle et al. (2020) demonstrated that a maximum subsidy of 2(n−1)2(n-1) and a total subsidy of 2(n−1)22(n-1)^2 are sufficient to guarantee the existence of an envy-freeable allocation. In this paper, we improve upon these bounds, even in a wider model. Namely, we show that, given an EF1 allocation, we can compute in polynomial time an envy-free allocation with a subsidy of at most n−1n-1 per agent and a total subsidy of at most n(n−1)/2n(n-1)/2. Moreover, we present further improved bounds for monotone valuations.Comment: 14page

    Maximin Fairness with Mixed Divisible and Indivisible Goods

    Full text link
    We study fair resource allocation when the resources contain a mixture of divisible and indivisible goods, focusing on the well-studied fairness notion of maximin share fairness (MMS). With only indivisible goods, a full MMS allocation may not exist, but a constant multiplicative approximate allocation always does. We analyze how the MMS approximation guarantee would be affected when the resources to be allocated also contain divisible goods. In particular, we show that the worst-case MMS approximation guarantee with mixed goods is no worse than that with only indivisible goods. However, there exist problem instances to which adding some divisible resources would strictly decrease the MMS approximation ratio of the instance. On the algorithmic front, we propose a constructive algorithm that will always produce an α\alpha-MMS allocation for any number of agents, where α\alpha takes values between 1/21/2 and 11 and is a monotone increasing function determined by how agents value the divisible goods relative to their MMS values.Comment: Appears in the 35th AAAI Conference on Artificial Intelligence (AAAI), 202

    Fairly Allocating Goods in Parallel

    Full text link
    We initiate the study of parallel algorithms for fairly allocating indivisible goods among agents with additive preferences. We give fast parallel algorithms for various fundamental problems, such as finding a Pareto Optimal and EF1 allocation under restricted additive valuations, finding an EF1 allocation for up to three agents, and finding an envy-free allocation with subsidies. On the flip side, we show that fast parallel algorithms are unlikely to exist (formally, CCCC-hard) for the problem of computing Round-Robin EF1 allocations

    Efficient Fair Division with Minimal Sharing

    Full text link
    A collection of objects, some of which are good and some are bad, is to be divided fairly among agents with different tastes, modeled by additive utility-functions. If the objects cannot be shared, so that each of them must be entirely allocated to a single agent, then a fair division may not exist. What is the smallest number of objects that must be shared between two or more agents in order to attain a fair and efficient division? We focus on Pareto-optimal, envy-free and/or proportional allocations. We show that, for a generic instance of the problem -- all instances except of a zero-measure set of degenerate problems -- a fair Pareto-optimal division with the smallest possible number of shared objects can be found in polynomial time, assuming that the number of agents is fixed. The problem becomes computationally hard for degenerate instances, where agents' valuations are aligned for many objects.Comment: Add experiments with Spliddit.org dat

    Fair division of indivisible goods: Recent progress and open questions

    Get PDF
    Allocating resources to individuals in a fair manner has been a topic of interest since ancient times, with most of the early mathematical work on the problem focusing on resources that are infinitely divisible. Over the last decade, there has been a surge of papers studying computational questions regarding the indivisible case, for which exact fairness notions such as envy-freeness and proportionality are hard to satisfy. One main theme in the recent research agenda is to investigate the extent to which their relaxations, like maximin share fairness (MMS) and envy-freeness up to any good (EFX), can be achieved. In this survey, we present a comprehensive review of the recent progress made in the related literature by highlighting different ways to relax fairness notions, common algorithm design techniques, and the most interesting questions for future research
    corecore