2,330 research outputs found

    Solar Photovoltaic and Thermal Energy Systems: Current Technology and Future Trends

    Get PDF
    Solar systems have become very competitive solutions for residential, commercial, and industrial applications for both standalone and grid connected operations. This paper presents an overview of the current status and future perspectives of solar energy (mainly photovoltaic) technology and the required conversion systems. The focus in the paper is put on the current technology, installations challenges, and future expectations. Various aspects related to the global solar market, the photovoltaic (PV) modules cost and technology, and the power electronics converter systems are addressed. Research trends and recommendations for each of the PV system sectors are also discussed.Junta de Andalucía P11-TIC-7070Ministerio de Ciencia e Innovación TEC2016-78430-

    Techno-Economic Feasibility Study of Autonomous Hybrid AC/DC Microgrid System

    Get PDF
    Distributed generation technology based on diesel generators often has been considered as a viable solution to providing power to remote areas, but the sky‐rocketing of diesel fuel price and the increasing cost of delivery to such remote sites have called for providing a sustainable solution that is environmentally friendly, economical, affordable, and easily accessible. To this end, the use of locally available energy resources is accepted as a sustainable solution in providing electricity for rural and remote settlements. The system cost of wind and solar energy systems is continuously decreasing because of the increase in the acceptance and deployment of the energy systems based on these renewable energy resources. A standalone hybrid AC/DC electric power system is designed, modeled, simulated, and optimized in HOMER Pro. HOMER is a Hybrid Optimization Model of Electric Renewable that enables the comparison of electric and thermal power production technologies across an extensive variety of applications. Both cycle‐charging and load‐following dispatched strategies are investigated. Plausible selected system components ratings are chosen for the simulation to ensure that there is enough search space for HOMER Pro to obtain an optimal system configuration. Net present cost (NPC) is used as an economic metric to assess the optimal configuration that is technically feasible

    Modeling a Grid-Connected PV/Battery Microgrid System with MPPT Controller

    Full text link
    This paper focuses on performance analyzing and dynamic modeling of the current grid-tied fixed array 6.84kW solar photovoltaic system located at Florida Atlantic University (FAU). A battery energy storage system is designed and applied to improve the systems stability and reliability. An overview of the entire system and its PV module are presented. In sequel, the corresponding I-V and P-V curves are obtained using MATLAB-Simulink package. Actual data was collected and utilized for the modeling and simulation of the system. In addition, a grid- connected PV/Battery system with Maximum Power Point Tracking (MPPT) controller is modeled to analyze the system performance that has been evaluated under two different test conditions: (1) PV power production is higher than the load demand (2) PV generated power is less than required load. A battery system has also been sized to provide smoothing services to this array. The simulation results show the effective of the proposed method. This system can be implemented in developing countries with similar weather conditions to Florida.Comment: 6 pages, 14 figures, PVSC 201

    Non-linear model predictive energy management strategies for stand-alone DC microgrids

    Get PDF
    Due to substantial generation and demand fluctuations in stand-alone green micro-grids, energy management strategies (EMSs) are becoming essential for the power sharing purpose and regulating the microgrids voltage. The classical EMSs track the maximum power points (MPPs) of wind and PV branches independently and rely on batteries, as slack terminals, to absorb any possible excess energy. However, in order to protect batteries from being overcharged by realizing the constant current-constant voltage (IU) charging regime as well as to consider the wind turbine operational constraints, more flexible multivariable and non-linear strategies, equipped with a power curtailment feature, are necessary to control microgrids. This dissertation work comprises developing an EMS that dynamically optimises the operation of stand-alone dc microgrids, consisting of wind, photovoltaic (PV), and battery branches, and coordinately manage all energy flows in order to achieve four control objectives: i) regulating dc bus voltage level of microgrids; ii) proportional power sharing between generators as a local droop control realization; iii) charging batteries as close to IU regime as possible; and iv) tracking MPPs of wind and PV branches during their normal operations. Non-linear model predictive control (NMPC) strategies are inherently multivariable and handle constraints and delays. In this thesis, the above mentioned EMS is developed as a NMPC strategy to extract the optimal control signals, which are duty cycles of three DC-DC converters and pitch angle of a wind turbine. Due to bimodal operation and discontinuous differential states of batteries, microgrids belong to the class of hybrid dynamical systems of non-Filippov type. This dissertation work involves a mathematical approximation of stand-alone dc microgrids as complementarity systems (CSs) of Filippov type. The proposed model is used to develop NMPC strategies and to simulate microgrids using Modelica. As part of the modelling efforts, this dissertation work also proposes a novel algorithm to identify an accurate equivalent electrical circuit of PV modules using both standard test condition (STC) and nominal operating cell temperature (NOCT) information provided by manufacturers. Moreover, two separate stochastic models are presented for hourly wind speed and solar irradiance levels

    Energy management in microgrids with renewable energy sources: A literature review

    Get PDF
    Renewable energy sources have emerged as an alternative to meet the growing demand for energy, mitigate climate change, and contribute to sustainable development. The integration of these systems is carried out in a distributed manner via microgrid systems; this provides a set of technological solutions that allows information exchange between the consumers and the distributed generation centers, which implies that they need to be managed optimally. Energy management in microgrids is defined as an information and control system that provides the necessary functionality, which ensures that both the generation and distribution systems supply energy at minimal operational costs. This paper presents a literature review of energy management in microgrid systems using renewable energies, along with a comparative analysis of the different optimization objectives, constraints, solution approaches, and simulation tools applied to both the interconnected and isolated microgrids. To manage the intermittent nature of renewable energy, energy storage technology is considered to be an attractive option due to increased technological maturity, energy density, and capability of providing grid services such as frequency response. Finally, future directions on predictive modeling mainly for energy storage systems are also proposed

    RELIABILITY AND RESILIENCE EVALUATION OF A STAND-ALONE MOBILE MICROGRID-ANALYSIS AND EXPERIMENTAL MEASUREMENTS

    Get PDF
    As the Department of Defense (DOD) deploys renewable distributed energy resources (DERs) to reduce fossil fuel consumption, microgrids are being evaluated as one way to generate and deliver reliable electric power to stationary and mobile military units. Commercial off the Shelf (COTS) microgrid components are a viable cost-effective option to setup stand-alone microgrid systems to support mobile military units and help drive the transition to a more sustainable yet energy-resilient military. Reliability and resilience are key parameters in determining the effectiveness of microgrids in supporting military missions. Although in the past few years many researchers have presented reliability and resilience models of various complexity, experimental measurements and model validation are not available in the literature for mobile COTS microgrids. The goal of this thesis research is to experimentally assess the reliability and resilience of stand-alone, mobile microgrids that can be carried by one or two individuals and can be easily assembled in the field in support of operations in locations where utility power is not available. Utilizing COTS DERs including batteries, PV arrays and power converters, three different standalone microgrid architectures were designed, analyzed, and tested in the laboratory. Reliability block diagrams, and system fault trees were created per MIL-HDBK-338B, to compare the reliability of the three microgrid configurations.Major, United States Marine CorpsApproved for public release. Distribution is unlimited

    Renewable energy system for an isolated sustainable social centre

    Get PDF
    This paper describes the development of the power converters and control algorithms to implement an isolated microgrid based in renewable energy sources used to feed a Sustainable Social Centre in a remote place. The microgrid is designed to work with photovoltaic panels, micro wind and micro-hydro turbines, or even with diesel generators. The control system of the power converters is totally digital and implemented by means of a TMS320f28335 Digital Signal Controller (DSC) from Texas Instruments. One of the most im-portant requirements imposed for the microgrid power system is the capability of providing a sinusoidal supply voltage with low harmonic distortion even in the presence of non linear electrical loads. The hardware topologies and the digital control systems of the power converters are evaluated through experimental results obtained with a developed laboratory prototype. This work is focused in the DC AC converter of the renewable energy system for the isolated Sustainable Centre.(undefined

    Modeling and control of stand-alone AC microgrids: centralized and distributed storage, energy management and distributed photovoltaic and wind generation

    Get PDF
    El aumento de la penetración de energías renovables en la red eléctrica es necesario para el desarrollo de un sistema sostenible. Para hacerlo posible técnicamente, se ha planteado el uso de microrredes, definidas como una combinación de cargas, generadores distribuidos y elementos de almacenamiento controlados gracias a una estrategia global de gestión energética. Además, las microrredes aumentan la fiabilidad del sistema puesto que pueden funcionar en modo aislado en caso de fallo de red. Esta tesis se centra en el desarrollo de microrredes AC en funcionamiento aislado. El objetivo principal es el diseño y la implementación de estrategias de gestión energéticas sin utilizar cables de comunicación entre los distintos elementos, lo que permite reducir los costes del sistema y aumentar su fiabilidad. Para ello, se abordan los siguientes aspectos: • Gestión energética de una microrred AC con generador diesel, almacenamiento centralizado y generación renovable distribuida • Diseño de técnicas de control “droop” para repartir la corriente entre inversores conectados en paralelo • Gestión energética de una microrred AC con almacenamiento distribuido y generación renovable distribuida • Control de la etapa DC/DC de inversores fotovoltaicos con pequeño condensador de entrada en el seno de una microrred • Control de extracción de máxima potencia sin sensores mecánicos para sistemas minieólicos en el seno de una microrred.The introduction of distributed renewable generators into the electrical grid is required for a sustainable system. In order to increase the penetration of renewable energies, microgrids are usually proposed as one of the most promising technologies. A microgrid is a combination of loads, distributed generators and storage elements which behaves as a single controllable unit for the grid operator. Furthermore, microgrids make it possible to improve the system reliability because they are capable of standalone operation in case of grid failure. This thesis is focused on the development of AC microgrids under stand-alone operation. Its main objective is to design and implement overall control strategies which do not require the use of communication cables, thereby reducing costs and improving reliability. For this purpose, the following aspects are tackled: • Energy management of an AC microgrid with diesel generator, centralized storage and distributed renewable generation • Design of droop methods so that the current is shared among parallel-connected inverters • Energy management of an AC microgrid with distributed storage and distributed renewable generation • Control of the DC/DC stage in photovoltaic inverters with small input capacitors within a microgrid • Sensorless MPPT control for small wind turbines within a microgrid.Programa Oficial de Doctorado en Energías Renovables (RD 1393/2007)Energia Berriztagarrietako Doktoretza Programa Ofiziala (ED 1393/2007
    corecore