4 research outputs found

    On-the-fly backward error estimate for matrix exponential approximation by Taylor algorithm

    Get PDF
    In this paper we show that it is possible to estimate the backward error for the approximation of the matrix exponential on-the-fly, without the need to precompute in high precision quantities related to specific accuracies. In this way, the scaling parameter s and the degree m of the truncated Taylor series (the underlying method) are adapted to the input matrix and not to a class of matrices sharing some spectral properties, such as with the classical backward error analysis. The result is a very flexible method which can approximate the matrix exponential at any desired accuracy. Moreover, the risk of overscaling, that is the possibility to select a value s larger than necessary, is mitigated by a new choice as the sum of two powers of two. Finally, several numerical experiments in MATLAB with data in double and variable precision and with different tolerances confirm that the method is accurate and often faster than available good alternatives

    A μ\mu-mode integrator for solving evolution equations in Kronecker form

    Full text link
    In this paper, we propose a μ\mu-mode integrator for computing the solution of stiff evolution equations. The integrator is based on a d-dimensional splitting approach and uses exact (usually precomputed) one-dimensional matrix exponentials. We show that the action of the exponentials, i.e. the corresponding batched matrix-vector products, can be implemented efficiently on modern computer systems. We further explain how μ\mu-mode products can be used to compute spectral transformations efficiently even if no fast transform is available. We illustrate the performance of the new integrator by solving three-dimensional linear and nonlinear Schr\"odinger equations, and we show that the μ\mu-mode integrator can significantly outperform numerical methods well established in the field. We also discuss how to efficiently implement this integrator on both multi-core CPUs and GPUs. Finally, the numerical experiments show that using GPUs results in performance improvements between a factor of 10 and 20, depending on the problem

    A μ-mode BLAS approach for multidimensional tensor-structured problems

    Get PDF
    In this manuscript, we present a common tensor framework which can be used to generalize one-dimensional numerical tasks to arbitrary dimension d by means of tensor product formulas. This is useful, for example, in the context of multivariate interpolation, multidimensional function approximation using pseudospectral expansions and solution of stiff differential equations on tensor product domains. The key point to obtain an efficient-to-implement BLAS formulation consists in the suitable usage of the mu-mode product (also known as tensor-matrix product or mode-n product) and related operations, such as the Tucker operator. Their MathWorks MATLAB (R)/GNU Octave implementations are discussed in the paper, and collected in the package KronPACK. We present numerical results on experiments up to dimension six from different fields of numerical analysis, which show the effectiveness of the approach

    A second order directional split exponential integrator for systems of advection–diffusion–reaction equations

    Get PDF
    We propose a second order exponential scheme suitable for two-component coupled systems of stiff evolutionary advection–diffusion–reaction equations in two and three space dimensions. It is based on a directional splitting of the involved matrix functions, which allows for a simple yet efficient implementation through the computation of small sized exponential-like functions and tensor-matrix products. The procedure straightforwardly extends to the case of an arbitrary number of components and to any space dimension. Several numerical examples in 2D and 3D with physically relevant (advective) Schnakenberg, FitzHugh–Nagumo, DIB, and advective Brusselator models clearly show the advantage of the approach against state-of-the-art techniques
    corecore