6 research outputs found

    Network Coding Meets TCP: Theory and Implementation

    Get PDF
    The theory of network coding promises significant benefits in network performance, especially in lossy networks and in multicast and multipath scenarios. To realize these benefits in practice, we need to understand how coding across packets interacts with the acknowledgment (ACK)-based flow control mechanism that forms a central part of today's Internet protocols such as transmission control protocol (TCP). Current approaches such as rateless codes and batch-based coding are not compatible with TCP's retransmission and sliding-window mechanisms. In this paper, we propose a new mechanism called TCP/NC that incorporates network coding into TCP with only minor changes to the protocol stack, thereby allowing incremental deployment. In our scheme, the source transmits random linear combinations of packets currently in the congestion window. At the heart of our scheme is a new interpretation of ACKs-the sink acknowledges every degree of freedom (i.e., a linear combination that reveals one unit of new information) even if it does not reveal an original packet immediately. Thus, our new TCP ACK rule takes into account the network coding operations in the lower layer and enables a TCP-compatible sliding-window approach to network coding. Coding essentially masks losses from the congestion control algorithm and allows TCP/NC to react smoothly to losses, resulting in a novel and effective approach for congestion control over lossy networks such as wireless networks. An important feature of our solution is that it allows intermediate nodes to perform re-encoding of packets, which is known to provide significant throughput gains in lossy networks and multicast scenarios. Simulations show that our scheme, with or without re-encoding inside the network, achieves much higher throughput compared to TCP over lossy wireless links. We present a real-world implementation of this protocol that addresses the practical aspects of incorporating network coding and decoding with TCP's wind ow management mechanism. We work with TCP-Reno, which is a widespread and practical variant of TCP. Our implementation significantly advances the goal of designing a deployable, general, TCP-compatible protocol that provides the benefits of network coding.National Science Foundation (U.S.) (Grant CNS-0627021)National Science Foundation (U.S.) (Grant CNS-0721491)National Science Foundation (U.S.) (Grant CCF-0915922)United States. Defense Advanced Research Projects Agency (Subcontract 18870740-37362-C)United States. Defense Advanced Research Projects Agency (Subcontract 060786)United States. Defense Advanced Research Projects Agency (Subcontract 069145)United States. Defense Advanced Research Projects Agency (Contract N66001-06-C-2020)Space and Naval Warfare Systems Center San Diego (U.S.) (Contract N66001- 08-C-2013

    On feedback-based rateless codes for data collection in vehicular networks

    Full text link
    The ability to transfer data reliably and with low delay over an unreliable service is intrinsic to a number of emerging technologies, including digital video broadcasting, over-the-air software updates, public/private cloud storage, and, recently, wireless vehicular networks. In particular, modern vehicles incorporate tens of sensors to provide vital sensor information to electronic control units (ECUs). In the current architecture, vehicle sensors are connected to ECUs via physical wires, which increase the cost, weight and maintenance effort of the car, especially as the number of electronic components keeps increasing. To mitigate the issues with physical wires, wireless sensor networks (WSN) have been contemplated for replacing the current wires with wireless links, making modern cars cheaper, lighter, and more efficient. However, the ability to reliably communicate with the ECUs is complicated by the dynamic channel properties that the car experiences as it travels through areas with different radio interference patterns, such as urban versus highway driving, or even different road quality, which may physically perturb the wireless sensors. This thesis develops a suite of reliable and efficient communication schemes built upon feedback-based rateless codes, and with a target application of vehicular networks. In particular, we first investigate the feasibility of multi-hop networking for intra-car WSN, and illustrate the potential gains of using the Collection Tree Protocol (CTP), the current state of the art in multi-hop data aggregation. Our results demonstrate, for example, that the packet delivery rate of a node using a single-hop topology protocol can be below 80% in practical scenarios, whereas CTP improves reliability performance beyond 95% across all nodes while simultaneously reducing radio energy consumption. Next, in order to migrate from a wired intra-car network to a wireless system, we consider an intermediate step to deploy a hybrid communication structure, wherein wired and wireless networks coexist. Towards this goal, we design a hybrid link scheduling algorithm that guarantees reliability and robustness under harsh vehicular environments. We further enhance the hybrid link scheduler with the rateless codes such that information leakage to an eavesdropper is almost zero for finite block lengths. In addition to reliability, one key requirement for coded communication schemes is to achieve a fast decoding rate. This feature is vital in a wide spectrum of communication systems, including multimedia and streaming applications (possibly inside vehicles) with real-time playback requirements, and delay-sensitive services, where the receiver needs to recover some data symbols before the recovery of entire frame. To address this issue, we develop feedback-based rateless codes with dynamically-adjusted nonuniform symbol selection distributions. Our simulation results, backed by analysis, show that feedback information paired with a nonuniform distribution significantly improves the decoding rate compared with the state of the art algorithms. We further demonstrate that amount of feedback sent can be tuned to the specific transmission properties of a given feedback channel

    On the role of feedback in network coding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 143-149).Network coding has emerged as a new approach to operating communication networks, with a promise of improved efficiency in the form of higher throughput, especially in lossy conditions. In order to realize this promise in practice, the interfacing of network coding with existing network protocols must be understood well. Most current protocols make use of feedback in the form of acknowledgments (ACKs) for reliability, rate control and/or delay control. In this work, we propose a way to incorporate network coding within such a feedback-based framework, and study the various benefits of using feedback in a network coded system. More specifically, we propose a mechanism that provides a clean interface between network coding and TCP with only minor changes to the protocol stack, thereby allowing incremental deployment. In our scheme, the source transmits random linear combinations of packets currently in the TCP congestion window. At the heart of our scheme is a new interpretation of ACKs - the receiver acknowledges every degree of freedom (i.e., a linear combination that reveals one unit of new information) even if it does not reveal an original packet immediately. Such ACKs enable a TCP-compatible sliding-window implementation of network coding. Thus, with feedback, network coding can be performed in a completely online manner, without the need for batches or generations. Our scheme has the nice feature that packet losses on the link can be essentially masked from the congestion control algorithm by adding enough redundancy in the encoding process.(cont.) This results in a novel and effective approach for congestion control over networks involving lossy links such as wireless links. Our scheme also allows intermediate nodes to perform re-encoding of the data packets. This in turn leads to a natural way of running TCP flows over networks that use multipath opportunistic routing along with network coding. We use the new type of ACKs to develop queue management algorithms for coded networks, which allow the queue size at nodes to track the true backlog in information with respect to the destination. We also propose feedback-based adaptive coding techniques that are aimed at reducing the decoding delay at the receivers. Different notions of decoding delay are considered, including an order-sensitive notion which assumes that packets are useful only when delivered in order. We study the asymptotic behavior of the expected queue size and delay, in the limit of heavy traffic.by Jay Kumar Sundararajan.Ph.D
    corecore