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Abstract

Network coding has emerged as a new approach to operatingigoitation networks,
with a promise of improved efficiency in the form of higherdbghput, especially in lossy
conditions. In order to realize this promise in practice itterfacing of network coding
with existing network protocols must be understood well. sMourrent protocols make
use of feedback in the form of acknowledgments (ACKs) fomatality, rate control and/or
delay control. In this work, we propose a way to incorporaevork coding within such a
feedback-based framework, and study the various benefitsing feedback in a network-
coded system.

More specifically, we propose a mechanism that provides ancieterface between
network coding and TCP with only minor changes to the protstatk, thereby allowing
incremental deployment. In our scheme, the source traasamtdom linear combinations
of packets currently in the TCP congestion window. At the hefour scheme is a new
interpretation of ACKs — the receiver acknowledges everyekegf freedom (i.e., a linear
combination that reveals one unit of new information) eendoes not reveal an original
packet immediately. Such ACKs enable a TCP-compatible gjgimdow implementation
of network coding. Thus, with feedback, network coding camperformed in a completely
online manner, without the need for batches or generations.

Our scheme has the nice feature that packet losses on ttealirite essentially masked
from the congestion control algorithm by adding enough nelduncy in the encoding pro-
cess. This results in a novel and effective approach for estimn control over networks
involving lossy links such as wireless links. Our scheme altows intermediate nodes to
perform re-encoding of the data packets. This in turn leadstatural way of running TCP
flows over networks that use multipath opportunistic ragisong with network coding.

We use the new type of ACKs to develop queue management dlgifor coded
networks, which allow the queue size at nodes to track tleelfacklog in information with
respect to the destination. We also propose feedback-basgdive coding techniques that
are aimed at reducing the decoding delay at the receiverffer&€it notions of decoding
delay are considered, including an order-sensitive notibith assumes that packets are
useful only when delivered in order. We study the asymptébavior of the expected
gueue size and delay, in the limit of heavy traffic.
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Chapter 1

Introduction

Advances in communication technology impact the lives ahlo beings in many signif-
icant ways. In return, people’s lifestyle and needs playyarkée in defining the direction
in which the technology should evolve, in terms of the typespplications and services it
is expected to support. This interplay generates a widetyeof fascinating challenges for
the communication engineer.

The main goal of communication system design is to guarahidair and efficient
use of the available resources. Different kinds of engingequestions arise from this
goal, depending on the type of application as well as therenment in which it has to
be implemented. For example, while a large file transfer istima@oncerned with long-
term average throughput, a video-conferencing applinagquires strict delay guarantees.
Similarly, data networks over the wireless medium have toobest to channel variability
and packet losses, which are usually not an issue in a wiregbrie

In addressing these challenges, it is useful to keep in nmatthe problem of commu-
nicating information is quite different from the seemingdfated problem of transporting
physical commodities because information can be trangdrim ways that commodities
cannot. For instance, it is easy to imagine a node repligaticoming data onto multiple
outgoing links. More generally, a node can code the datafierdnt ways. By coding, we
mean that the node can view the incoming data as realizadiossme variables, and can
transmit the output of a function applied to these varigldgaluated at the incoming data.

Finding the “most useful” functions (codes) and estabfigithe fundamental limits on the
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benefit that coding can provide over simple uncoded trarsomshave been the focus of
the field of information theory].

The concept of coding data has been put to good use in todayiscinication systems
at the link level. For instance, practical coding schemeskaown that achieve data rates
very close to the fundamental limit (capacity) of the additivhite Gaussian noise channel
[3]. However, extending this idea to the network setting in acpcal way has been a
challenging task. On the theoretical front, although thelamental limits for many multi-
user information theory problems are yet to be establistéslywell known that there are
significant benefits to coding beyond the link level (for arste from the results in the
field of network coding). Yet, today’s networks seldom appidygling ideas beyond the link
level. Even replication is seldom used — the most common wamplement a multicast

connection is to initiate multiple unicast connectionsg or each receiver.

A possible explanation is the fact that once we go to the nd&twetting, the control
aspect of the communication problem becomes more signifi€averal new control prob-
lems show up just to ensure that the network is up and runmdgtzat all users get fair
access to the resources. These are arguably more critiatd tian the problem of im-
proving the overall speed of communication. While the maiesgion in the point-to-point
setting is one of how best to encode the data to combat chamoes and variability (the
coding question), the network setting leads to new questige who should send when
(scheduling), how fast to send (congestion control), and twfind the best path to the
destination (routing). To ensure simple and robust coatthn and management of the
network, the conventional approach has been to group datgpackets that are then pro-

cessed like commodities, without much coding inside thevogk.

In such a framework, the most popular approach to addre#isasg control questions
has been the use of feedback. Most network protocols todapult around some form
of an acknowledgment mechanism. Therefore, in order tazesttie theoretically proven
benefits of coding in the network setting, we have to find a wapcorporate coding into
the existing network protocols, without disrupting thedback-based control operations.
In other words, we have to deal with the deployment problemselation that requires

significant changes to the existing communication pro®wall be very difficult to deploy
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in a large scale, for practical reasons. Also, the modificathust besimple as otherwise,
its interaction with the existing dynamics would be verydhtir understand and control.

To summarize, coding is generally associated with imprptie efficiency of the com-
munication process, and its robustness to errors. Feedtwathke other hand, is critical for
controlling various aspects of the communication systeah s1$ delay or congestion. We
would definitely like to make use of the flexibility of coding order to make the commu-
nication process more efficient. At the same time, we alse baconform with existing
feedback-based protocols.

This thesis explores the option of integrating these twa&mental concepts, namely
feedbackandcoding in the context of a packetized data network. We investitjsgrob-
lems associated with implementing this approach withirfidai@ework of existing systems
and propose a practical solution. We also demonstrate ttemipa benefits of combining

these two concepts.

1.1 The role of feedback in communication protocols

Feedback plays a crucial role in communication netwo#ks|f is well known that feed-
back can significantly reduce communication delay (errggoeents) and the computa-
tional complexity of the encoding and decoding processanteven be used to predict and
correct noise if the noise is correlated across time, rn@gpilh an improvement in capacity
[5]. In addition, feedback can be used to determine the chairké transmitter side, and
accordingly adapt the coding strategy. In addition to treggaications, feedback plays a
key role in managing the communication network, by enabdimgple protocols for con-
gestion control and coordination among the users. In thi&kywee do not study the use of
feedback for noise prediction or channel learning. Insteadfocus on acknowledgment-
based schemes and their use for reliability, congestiotraicand delay control.

The most common type of feedback signal used in practice iacanowledgment
packet that indicates successful reception of some paheofransmitted data. The sim-
plest protocol that makes use of acknowledgments (ACKs)asAtomatic Repeat re-

Quest (ARQ) protocol. Reliable point-to-point communicataver a lossy packet link or
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network with perfect feedback can be achieved using the AR@rmse. It uses the idea that
the sender can interpret the absence of an ACK to indicate#iseie of the corresponding
packet within the network, and in this case, the sender simgttansmits the lost packet.
Thus, we can ensure the reliability of the protocol.

In the ARQ scheme, if the feedback link is perfect and delag.fthen every success-
ful reception conveys a new packet, implying throughputroglity. Moreover, this new
packet is always the next unknown packet, which impliesdnebt possible packet delay.
Since there is feedback, the sender never stores anyttengtkeiver already knows, im-
plying optimal queue size. Thus, this simple scheme simattasly achieves the optimal
throughput along with minimal delay and queue size. Moredhe scheme is completely
online and not block-based. The ARQ scheme can be generatizgtliations that have
imperfections in the feedback link, in the form of eitherdes or delay in the ACKs. Ref-
erence ] contains a summary of various protocols based on ARQ.

In addition to reliability and delay benefits, feedback glayother critical role in the
communication system, namely, it enables congestion abnin today’s internet, the
Transmission Control Protocol (TCP) makes use of an ackn@miedt mechanism to
throttle the transmission rate of the sender in order togreeongestion inside the net-
work [7, 8]. The main idea is to use ACKs to infer losses, and to use l@sasongestion
indicator, which in turn triggers a reduction in the packahsmission rate.

Thus, acknowledgment mechanisms are very important faeet lthe following two

reasons:
1. Providing reliability guarantees in spite of losses amdrs in the network

2. Controlling various aspects of the communication systermh as delay, queue sizes

and congestion

1.2 Coding across packets

However, acknowledgment schemes cannot solve all problé&inst of all, the feedback

may itself be expensive, unreliable or very delayed. Thggpleas, for instance, in satellite
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links. In such situations, one has to rely on coding acroskeda to ensure reliability.

Even if the system has the capability to deliver ACKs reliadotgl quickly, simple link-
by-link ARQ is not sufficient in general, especially if we goybad a single point-to-point
link. The scenario and the requirements of the applicatiay nequire something more
than simple retransmission. A case in point is multicast aueetwork of broadcast-mode
links, for instance, in wireless systems. If a packet it$rarted, it is likely to be received
by several nearby nodes. If one of the nodes experienced ehaemhel state and thereby
lost the packet, then a retransmission strategy is not tstep&ion, since the retransmission
is useless from the viewpoint of the other receivers thaeladready received the packet.
Instead, if we allowed coding across packets, then it isiples& convey simultaneously
new information to all connected receivers. Referer@dighlights the need for coding

for the case of multicast traffic, even if feedback is present

Another scenario where coding across packets can makeeaediffe is in certain net-
work topologies where multiple flows have to traverse a bo#tk link. A good example
is the butterfly network from1]], which is shown in Figuré.-1. Here, simple ARQ applied
to each link can ensure there are no losses on the links. Howeven if the links are
error-free, the node D has to code (bitwise XOR) across padkedrder to achieve the
highest possible multicast throughput of 2 packets per-shae In the absence of coding,

the highest achievable rate is 1.5 packets per time-slot.

Through this example 1] introduced the field of network coding. The key idea is that
nodes inside the network are allowed to perform coding djgera on incoming packets,
and send out coded versions of packets instead of simplygptite incoming packets onto
outgoing links. An algebraic framework for network codingsyproposed by Koetter and
Meédard in [LO]. Network coding has been shown to achieve the multicasiapof any
network. In fact, 1] showed that linear coding suffices if all the multicast sasshave the
same destination set. Referené&é€][presented a random linear network coding approach
for this problem. This approach is easy to implement, andd@ts not compromise on
throughput. The problem of network coding based multicast & cost criterion has also
been studied, and distributed algorithms have been prdpwssolve this problemi[3],

[14]. Network coding also readily extends to networks with loicest-mode links or lossy
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Figure 1-1: The butterfly network ofl]

links [15], [1€], [17]. Thus, there are situations where coding is indispensfibha a
throughput perspective.

Besides improving throughput, network coding can also beé tseimplify network
management. The work by Bhadra and Shakkoti&|i proposed an interesting scheme for
large multi-hop networks, where intermediate nodes in #tevark have no queues. Only
the source and destination nodes maintain buffers to storkeps. The packet losses that
occur due to the absence of buffers inside the network, argensated for by random
linear coding across packets at the source.

In short, the benefits of network coding can be viewed to drize two basic and

distinct reasons:
1. Resilience to losses and errors
2. Managing how flows share bottleneck links

Several solutions have been proposed that make use of cadings packets. Each
solution has its own merits and demerits, and the optimailcehdepends on the needs of
the application. We compare below, three such approachig&al flountain codes, random

linear network coding and priority encoding transmission.
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1. Digital fountain codes: The digital fountain codes 1P, 20, 21]) constitute a well-
known approach to this problem. From a blockidfansmit packets, the sender generates
random linear combinations in such a way that the receiver wéth high probability,
decode the block once it receivasy set of slightly more thark linear combinations.
This approach has low complexity and requires no feedbaaepe to signal successful
decoding of the block. However, fountain codes are desidoled point-to-point erasure
channel and in their original form, do not extend readily toedwork setting. Consider
a two-link tandem network. An end-to-end fountain code vgitmple forwarding at the
middle node will result in throughput loss. If the middle mochooses to decode and re-
encode an entire block, the scheme will be sub-optimal imseof delay, as pointed out
by [22]. In this sense, the fountain code approach is not compesabiss links. For
the special case of tree networks, there has been some vemdndn composing fountain
codes across links by enabling the middle node to re-encaetefore decoding the entire
block [23].

2. Random linear network coding: Network coding was originally introduced for the
case of error-free networks with specified link capacitj@sX0]), and was extended to the
case of erasure network$d], [16], [17]. In contrast to fountain codes, the random linear
network coding solution of][2] and [L6] does not require decoding at intermediate nodes
and can be applied in any network. Each node transmits a mafidear combination of all
coded packets it has received so far. This solution enshegswith high probability, the
transmitted packet will have what we call thovation guarantee property.e., it will
beinnovative to every receiver that receives it successfully, excetafreceiver already
knows as much as the sender. Thus, every successful rateptidring a unit of new
information. In [L6], this scheme is shown to achieve capacity for the case oflacast

session.
The work of Daneaet al. [15] also studied a wireless erasure network with broadcast but
no interference, and established the capacity region.k&ili5] however, the scheme of

[16] does not require the destination to be provided the lonaifall the erasures through-

1An innovative packet is a linear combination of packets Whi linearly independent of previously
received linear combinations, and thus conveys new infaomaSee Sectiof.3for a formal definition.
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out the network.

An important problem with both fountain codes and randoredimnetwork coding is
that although they are rateless, the encoding operatioarfefmed on a block (or gener-
ation) of packets. This means that in general, there is noagtee that the receiver will
be able to extract and pass on to higher layers, any of thenatigackets from the coded

packets till the entire block has been received. This leadsdecoding delay.

Such a decoding delay is not a problem if the higher layersamyway use a block
only as a whole€.g, file download). This corresponds to traditional approaahanfor-
mation theory where the message is assumed to be useful®alywhole. No incentive is
placed on decoding “a part of the message” using a part ofddeweord. However, many
applications today involve broadcasting a continuousastref packets in real-times(g,
video streaming). Sources generate a stream of messag#s hewve an intrinsic temporal
ordering. In such cases, playback is possible only till thiafoup to which all packets have
been recovered, which we cdlle front of contiguous knowledg&hus, there is incentive
to decode the older messages earlier, as this will reducplélyback latency. The above
schemes would segment the stream into blocks and procebdomkeat a time. Block sizes
will have to be large to ensure high throughput. Howeverlaf/pack can begin only after

receiving a full block, then large blocks will imply a largeldy.

This raises an interesting question: can we code in such dhaayplayback can begin
even before the full block is received? In other words, wemaoge interested in packet
delay than block delay. These issues have been studied weiiogis approaches b4,
[25] and [26] in a point-to-point setting. However, in a network settitige problem is not
well understood. Moreover, these works do not consider tleaig management aspects
of the problem. In related work2[] and [28] address the question of how many original
packets are revealed before the whole block is decoded uma&im code setting. However,
performance may depend on not ohlgw much dataeaches the receiver in a given time,
but alsowhich part of the dataFor instance, playback delay depends on not just the number
of original packets that are recovered, but also the ordesich they are recovered. One
option is to precode the packets using some form of multipkcdption code []. In that

case, only the number of received coded packets would mattéithe order in which they
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are received. However, in real-time streaming applicatitinis approach is likely to have
high computational complexity. Therefore, it is better &sidn the network so that it is
aware of the ordering of the data, and tries to deliver thikezgrackets first.

3. Priority encoding transmission: The scheme proposed i&9], known as priority
encoding transmission (PET), addresses this problem kyyopinog a code for the erasure
channel that ensures that a receiver will receive the firshighest priority): messages
using the firstt; coded packets, whetg increases with decreasing priority. 180, [31],
this is extended to systems that perform network coding. Wcatenated network coding
scheme is proposed i8]], with a delay-mitigating pre-coding stage. This schemargu
antees that the!” innovative reception will enable the receiver to decodeithienessage.
In such schemes however, the ability to decode messageden i@quires a reduction in
throughput because of the pre-coding stage.

Even in the presence of coding, we still need feedback toampht various control
mechanisms in the network. Especially, congestion com&é@lires some mechanism to
infer the build-up of congestion. The problem of decodintager queue management
could also become simpler if we make use of feedback wellhortsboth feedback and
coding have their benefits and issues. A good communicayisters design will have to

employ both concepts in a synergistic manner.

1.3 Problems addressed

This leads to the question — how to combine the benefits of ARIhatwork coding? The
goal is to extend ARQ’s desirable properties in the poinpagat context, to systems that
require coding across packets.

Throughout this thesis, we focus on linear codes. The exachanism for coding
across packets in a practical system is described in Chaptéor now, we can visualize
the coding operation as follows. Imagine the original datelgets are unknown variables.
The coded packets generated by the encoder can be viewatkas diquations in these
unknown variables.

A variety of interesting problems arise when we try to inargie a coding-based ap-
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proach into an acknowledgment-based mechanism. The tloesises on the following

problems:

1. The problem of decoding delayOne of the problems with applying ARQ to a coded
system is that a new reception may not always reveal the métiawn packet to
the receiver. Instead, it may bring in a linear equation Iving the packets. In
conventional ARQ, upon receiving an ACK, the sender drops thEe&d packet and
transmits the next one. But in a coded system, upon receiviriCGK for a linear
equation, it is not clear which linear combination the serst®uld pick for its next
transmission to obtain the best system performance. Thigosrtant because, if the
receiver has to collect many equations before it can dedwalariknowns involved,

this could lead to a large decoding delay.

2. How does coding affect queue managemehtzlated question is: upon receiving
the ACK for a linear equation, which packet can be excludeahfiature codingi.e.,
which packet can be dropped from the sender’'s queue? Moexabn if the nodes
perform coding across packets, what should be the policygdating the queues at

various nodes in the network?

In the absence of coding, the conventional approach to goeregement at the
sender node is that once a packet has been delivered at tireatien, the sender
finds this out using the acknowledgments, and then dropsabkep. As far as the
intermediate nodes in the network are concerned, theylystate and forward the

packets, and drop a packet once it has been forwarded.

With coding however, this simple policy may not be the best.painted out in the
example in the introduction to Chapt2rthe conventional approach of retaining in
the sender’s queue any packet that has not been deliverdé testination is not
optimal. In fact, we will show in Chaptet that this policy leads to a much larger

gueue than necessary, especially as the traffic load on therkeincreases.

Also, if the intermediate nodes want to perform coding faseire correction as in
the work of [L6], they cannot drop a packet immediately after forwardingTibhey

will need to retain it and involve it in the coding for a whil@, order to make sure
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the receiver has sufficiently many redundant (coded) padketnsure reliable data
transfer. In such a case, we need to define an effective quanagament policy for

the intermediate nodes as well.

. Practical deployment of network codintyn order to bring the ideas of network cod-
ing into practice, we need a protocol that brings out the fisnef network coding
while requiring very little change in the protocol stackoWlcontrol and congestion
control in today’s internet are predominantly handled by Tmansmission Control
Protocol (TCP), which works using the idea of a sliding trarssmon window of
packets, whose size is controlled based on feedback. Omdloeetical side, Chen
et al. [32] proposed distributed rate control algorithms for netwodding, in a
utility maximization framework, and pointed out its simitst to TCP. However, to
implement such algorithms in practice, we need to createandnterface between

network coding and TCP.

The main idea behind TCP is to use acknowledgments of packetsey arrivein
correct sequence ordén order to guarantee reliable transport and also as a fekdba
signal for the congestion control loop. Now, if we allow thetwork to perform
network coding however, the notion of an ordered sequengmackets as used by
TCP goes missing. What is received is a randomly chosen limgabination, which
might not immediately reveal an original packet, even ifobeeys new information.
The current ACK mechanism in TCP does not allow the receiveckn@vledge a
packet before it has been decoded. This essentially meanhgh#hdecoding delay
will enter the round-trip time measurement, thereby canfyshe TCP source. For
network coding, we need a modification of the standard TCP argsi that allows
the acknowledgment of every unit of information receivereif it does not cause

a packet to get decoded immediately.

In network coding, there have been several important ashgaimcbridging the gap
between theory and practice. The distributed random lineding idea, introduced
by Hoet al. [33], is a significant step towards a robust practical impleraigon of

network coding. The work by Chacet al. [34] introduced the idea of embedding the
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coefficients used in the linear combination in the packetlaeand also the notion
of generations (coding blocks). In other work, Kadtial. [35] used the idea of
local opportunistic coding to present a practical impletagon of a network coded
system for unicast. The use of network coding in combinatuith opportunistic
routing was presented ir3¢]. However, these works rely on a batch-based coding
mechanism which is incompatible with TCP. Refereri¢d proposed an on-the-fly
coding scheme, but the packets are acknowledged only upmmdithgy. Thus, none

of these works allows an ACK-based sliding-window networlling approach that

is compatible with TCP. This is the problem we address in oureci work.

These issues motivate the following questions — if we hagdlfack in a system with
network coding, what is the best possible tradeoff betwbeeoughput, delay and queue
size? In particular, how close can we get to the performamc®Rs) for the point-to-
point case? And finally, how to incorporate network codingxisting congestion control

protocols such as TCP?

1.4 Main contributions

1. Theoretical contributions:The thesis introduces a new notion called the notion of
a node “seeing a packet” (The reader is referred to Sectibfor the formal def-
inition.). This notion enables the study of delay and queceupancy in systems
involving coding across packets, by mapping these probkenveell-known prob-
lems within the framework of traditional queuing theory.itgsthis notion, we com-
pute the expected queue size in a variety of scenarios wittonke coding. We also
develop models to analyze the decoding and delivery delayah systems. More

specifically, our contributions include the following:

(&) In a packet erasure broadcast scenario, we propose bguatee management
algorithm called ‘drop-when-seen’, which ensures thattieue size tracks the
true information backlog between the sender and the resgmmgthout compro-

mising on reliability or throughput. Our algorithm achiswvhe optimal heavy-
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traffic asymptotic behavior dhe expected queue size at the seradea function

of 1/(1 — p), as the load factgs approaches its limiting value of 1.

(b) Inthe same scenario, we propose a new coding algorithichvig throughput-
optimal and is conjectured to achieve the optimal heavifi¢rasymptotic growth
of the expected delay per packas the system load approaches capacity. This
algorithm is compatible with an appropriately modified dwpen-seen queue
management policy as well, implying that the algorithm \aibo achieve the

optimal asymptotic behavior of the queue size.

2. Practical contributions: Using the notion of seen packets, we develop practically
useful queue management algorithms as well as a new comgestitrol protocol for
coded networks. In particular, we present a new interpogtatf acknowledgments
(ACKs) where the nodes acknowledge a packet upon seeinghipuihaving to wait
till it is decoded. This new type of ACK is expected to proveyweseful in realizing

the benefits of network coding in practice.

In particular, it enables the incorporation of network ewginto the current TCP/IP
protocol stack. We propose the introduction of a new netwoxking layer between
the TCP and IP layers. The network coding layer accepts paieh the sender
TCP and transmits random linear combinations of these padhtt the network.

Nodes inside the network may further transform these codellgis by re-encoding
them using random linear coding. We present a real-life @mgntation of our new
protocol on a testbed and demonstrate its benefits. Our goaksiep towards the
implementation of TCP over lossy networks in conjunctionhwiew approaches

such as multipath and opportunistic routing, and potdgitelen multicast.

1.5 Outline of the thesis

The thesis is organized as follows. Chap?estudies the problem of queuing in coded
networks and presents a generic approach to queue managartfenpresence of coding

across packets. We also introduce a new type of acknowlegigimerder to implement
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this approach. Chapter addresses the important problem of coding for delay-Seesit
applications. In particular, it introduces a new algoritfon adaptive coding based on
feedback, that ensures that the receiver does not expeneuach delay waiting to decode
the original packets. Chaptémakes use of the new type of acknowledgment introduced
in Chapter2 in order to fit network coding into the TCP protocol. We propthseinsertion

of a new layer inside the protocol stack between TCP and IPptioaides a clean interface
between TCP and network coding. As a result, the error caoreeind multipath capa-
bilities of coding are now made available to any applicativat expects a TCP interface.
After laying the theoretical foundations of the new protaacChapter4, we then present
an experimental evaluation of the performance of this paton a real testbed. This is
described in Chaptés. Finally, Chaptes presents a summary of the thesis with pointers

for potential extensions in the future.
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Chapter 2

Queue management in coded networks

This chapter explores the option of using acknowledgmemtsiénage effectively the
gueues at the nodes in a network that performs network codingackets arrive at the
sender according to some stochastic process, (a38n3p]) and links are lossy (as in
[16, 17]), then the queue management aspect of the problem becomestant. The main
guestions that we address in this chapter are — in a netwatlethploys network coding,
when can the sender drop packets from its queue? Also, whidkeps should intermediate
nodes store, if any?

In the absence of coding, the conventional approach to qguanagement at the sender
node is that once a packet has been delivered at the destintite sender finds this out
using the acknowledgments, and then drops the packet. Assftre intermediate nodes
inside the network are concerned, they usually store arvdaial the packets, and drop a
packet once it has been forwarded to the next hop.

With coding however, this simple policy may not be the best pdinted out in the
example below, the conventional approach of retaining ensbnder’'s queue any packet
that has not been delivered to the destination is not optiindact, we shall show in this
chapter that this policy leads to a much larger queue thaessacy, especially as the traffic
load on the network increases.

Also, if the intermediate nodes want to perform coding faaseire correction as in
the work of [LG], they cannot drop a packet immediately after forwardingTihey will

need to retain it and involve it in the coded transmissiomsafevhile, in order to make
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sure the receiver has sufficiently many redundant (codetkgtsito be able to decode the
transmitted data. In such a case, we need to define an effegteue management policy

for the intermediate nodes as well.

An example:Consider a packet erasure broadcast channel with one semdienany
receivers. Assume that in each slot the sender transmitearlcombination of packets
that have arrived thus far, and is immediately informed lgheaceiver whether the trans-
mission succeeded or got erased. With such feedback, o dpt the sender is to drop
packets that every receiver has decoded, as this would fect #fie reliability. However,
storing all undecoded packets may be suboptimal. Considéuation where the sender
hasn packetspy, p2 ..., pn, @and every receiver has received the following setrof-(1)
linear combinations: f{; +p2), (P2+P3), - .., (Pu_1+Pa). A drop-when-decoded scheme
will not allow the sender to drop any packet, since no packetlme decoded by any re-
ceiver yet. However, the true backlog in terms of the amotimformation to be conveyed
has a size of just 1 packet. We ideally want queue size to gpored to the information
backlog. Indeed, in this example, it would be sufficient & gender stores any opgin

order to ensure reliable delivery.

This example indicates that the ideal queuing policy willkeaure that the physical
gueue occupancy tracks the backlog in degrees of freedorohvghalso called theirtual
queug([38, 39)).

In this chapter, we propose a new queue management policpéad networks. This
policy allows a node to drop one packet for every degree @dioen that is delivered to
the receiver. As a result, our policy allows the physicalwgeccupancy to track the
virtual queue size. The chapter is organized as followsti@e2.1 introduces the central
idea of the thesis, namely, the notion of a node ‘seeing’ &gqiacSection2.2 explains
our contribution in the light of the related earlier work. erproblem setup is specified in
Section2.3. Section2.4 presents and analyzes a baseline queue update algoritted cal
the drop-when-decoded algorithm. Sectibb presents our new queue update algorithm
in a generic form. This is followed by Sectiéh6 which proposes an easy-to-implement
variant of the generic algorithm, called the drop-whemsagorithm. Sectior2.7 studies

the overhead associated with implementing these algosittimally, Sectior?.8 presents
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the conclusions.

2.1 ‘Seeing’ a packet — a novel acknowledgment mecha-
nism

In this work, we treat packets as vectors over a finite field. rédgrict our attention to
linear network coding. Therefore, the state of knowledge oibde can be viewed as a
vector space over the field (see Sectio@for further details).

We propose a new acknowledgment mechanism that uses féettbacknowledge
degrees of freedohinstead of original decoded packe®ased on this new form of ACKs,
we propose an online coding module that naturally genesl&RQ to coded systems.
The code implies a queue update algorithm that ensureshihahysical queue size at the
sender will track the backlog in degrees of freedom

It is clear that packets that have been decoded by all rersemeed not be retained at
the sender. But, our proposal is more general than that. Thénkation is that we can
ensure reliable transmission even if we restrict the semtl@nsmit packet to be chosen
from a subspace that is independerftthe subspace representing the common knowledge
available at all the receivers.

In other words,the sender need not use for coding (and hence need not staye) a
information that has already been received by all the reseivTherefore, at any point in
time, the queue simply needs to store a basis for a coset spidcespect to the subspace
of knowledge common to all the receivers. We define a spec#ig @®f computing this

basis using the new notion of a node “seeing” a message padhkeh is defined below.

Definition 1 (Index of a packet)For any positive integek, the k' packet that arrives at

the sender is said to have amexk.

1Here, degree of freedomefers to a new dimension in the appropriate vector spacesepting the
sender’s knowledge.

2A subspaces; is said to bendependenof another subspacs, if S; NS, = {0}. See £0] for more
detalils.
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Definition 2 (Seeing a packet)A node is said to haveeena message packet if it has
received enough information to compute a linear combimatibthe form(p + q), where
q is itself a linear combination involving only packets withiadex greater than that gb.

(Decoding implies seeing, as we can pigk= 0.)

In our scheme, the feedback is utilized as follows. In cotieeal ARQ, a receiver
ACKs a packet upon decoding it successfully. However, in chemea receiver ACKs a
packet when it sees the packetOur new scheme is called tldeop-when-seealgorithm
because the sendérops a packet if all receivers have seen (ACKed) it

Since decoding implies seeing, the sender’s queue is eegh&xtbe shorter under our
scheme compared to the drop-when-decoded scheme. Howevewjll need to show
that in spite of dropping seen packets even before they areded, we can still ensure
reliable delivery. To prove this, we present a determiaistding scheme that uses only
unseen packets and still guarantees that the coded padkstmultaneously cause each
receiver that receives it successfully, to see its next ureepacket We shall prove later
that seeing a new packet translates to receiving a new degfemedom. This means, the
innovation guarantee property (Definiti@his satisfied and therefore, reliability and 100%
throughput can be achieved (see Algorithm 2 (b) and corresipg Theorem$ and8 in
Section2.6).

The intuition is that, if all receivers have sepnthen their uncertainty can be resolved
using only packets with index more than thatpbecause after decoding these packets,
the receivers can compuégand hence obtaip as well. Therefore, even if the receivers
have not decodeq, no information is lost by dropping it, provided it has beeers by all
receivers.

Next, we present an example that explains our algorithm $omgle two-receiver case.

Section2.6.3extends this scheme to more receivers.

Example: Table2.1shows a sample of how the proposed idea works in a packetrerasu
broadcast channel with two receivers A and B. The senderseajiseshown after the arrival
point and before the transmission point of a slot (see Seétidfor details on the setup).

In each slot, based on the ACKSs, the sender identifies the msdem packet for A and
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Time | Sender’s queue | Transmitted Channel A B
packet state
Decoded Seen Decoded Seen

but not but not
decoded decoded

1 | mp p1 —A, »B | p1 - -

2 | p1,p2 p1 ® p2 —A,—B | p1,p2 - - P1

3 P2, P3 p2 b P3 - A, — B | p1,P2 - - P1, P2

4 P3 P3 -+ A, — B | p1,p2 - P1,P2, P3 -

5 P3,; P4 P3 P P4 —A, »B | p1,p2 P3 P1,P2;P3

6 P4 P4 —A, —B | p1,P2,P3,P4 - P1,P2,P3,P4 -

Table 2.1: An example of the drop-when-seen algorithm

B. If they are the same packet, then that packet is sent. Ifthet; XOR is sent. It can
be verified that, with this rule, every reception causes eactiver to see its next unseen
packet.

In slot 1,p; reaches A but not B. In slot 2p; @ p2) reaches A and B. Since A knows
p1, it can also decodp,. As for B, it has now seen (but not decoded) At this point,
since A and B have seqw, the sender drops it. This is acceptable even though B has not
yet decodegb,, because B will eventually decogg (in slot 4), at which time it can obtain
p1- Similarly, p2, ps andp, will be dropped in slots 3, 5 and 6 respectively. However, the
drop-when-decoded policy will drop; andp, in slot 4, andps andpy in slot 6. Thus,
our new strategy clearly keeps the queue shorter. Thisnsdlty proved in Theorem and
Theorem6. The example also shows that it is fine to drop packets belfieredare decoded.

Eventually, the future packets will arrive, thereby allogithe decoding of all the packets.

2.2 Background and our contribution

2.2.1 Related earlier work

In [41], Shrader and Ephremides study the queue stability angt déldock-based random
linear coding versus uncoded ARQ for stochastic arrivalsbhnoadcast setting. However,
this work does not consider the combination of coding andlfaek in one scheme. In

related work, §2] studies the case of load-dependent variable sized codouk$ with
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ACKSs at the end of a block, using a bulk-service queue moded.ni&in difference in our
work is that receivers ACK packets even before decoding tlagch this enables the sender

to perform online coding.

Sagduyu and Ephremide$d consider online feedback-based adaptation of the code,
and propose a coding scheme for the case of two receivers Wdrk focuses on the
maximum possible stable throughput, and does not congidarde feedback to minimize
gueue size or decoding delay. ], the authors study the throughput of a block-based
coding scheme, where receivers acknowledge the succeesfotling of an entire block,
allowing the sender to move to the next block. Next, they w@rghe option of adapting
the code based on feedback for the multiple receiver casey Biild on the two-receiver
case of #3] and propose a greedy deterministic coding scheme that wigdyenthroughput
optimal, but picks a linear combination such that the nunabeeceivers that immediately
decode a packet is maximized. In contrast, in our work we idenghroughput-optimal

policies that aim to minimize queue size and delay.

In [37], Lacan and Lochin proposes an erasure coding algorithiacc@etrys to ensure
reliability in spite of losses on the acknowledgment path.ilévilmis scheme also employs
coding in the presence of feedback, their approach is to mékienal use of the feedback,
in order to be robust to feedback losses. As opposed to suap@oach, we investigate
how best to use the available feedback to improve the codimgrse and other performance
metrics. For instance, in the scheme3d]| packets are acknowledged (if at all) only when
they are decoded, and these are then dropped from the codidgw However, we show
in this work that, by dropping packets when they are seen, avergaintain a smaller
coding window without compromising on reliability and tlughput. A smaller coding
window translates to lower encoding complexity and smajlexue size at the sender in the
case of stochastic arrivals.

The use of ACKs and coded retransmissions in a packet erasoaedast channel
has been considered for multiple unicasgtS| [and multicast {6], [47], [48], [49]). The
main goal of these works however, is to optimize the through®ther metrics such as
gueue management and decoding delay are not considereat. Wodk, we focus on using

feedback to optimize these metrics as well, in addition taexing 100% throughput in
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a multicast setting. Our coding module (in Secti®B.9 is closely related to the one
proposed by Larsson in an independent wat&].[ However, our algorithm is specified
using the more general framework of seen packets, whiclvslles to derive the drop-
when-seen queue management algorithm and bring out thectombetween the physical
gueue and virtual queue sizes. Referent® floes not consider the queue management
problem. Moreover, using the notion of seen packets allawslgorithm to be compatible
even with random coding. This in turn enables a simple ACK fatramd makes it suitable

for practical implementation. (See Remarfor further discussion.)

2.2.2 Implications of our new scheme

The newly proposed scheme has many useful implications:

e Queue size:The physical queue size is upper-bounded by the sum of thedgmscn
degrees of freedom between the sender and all the receNassfact implies that as
the traffic load approaches capacity (as load fagtes 1), the expected size of the
physical queue at the sendeOs(ﬁ) . This is the same order as for single-receiver

ARQ, and hence, is order-optimal.

¢ Queuing analysis:Our scheme forms a natural bridge between the virtual ansiphy
cal queue sizes. It can be used to extend results on thetstabitirtual queues such
as [38], [39] and [BQ] to physical queues. Earlier work has studied the backlog in
degrees of freedom (virtual queue size) using tradition@uing theory techniques
such as the transform based analysis for the queue size ofiMji@@ues, or even a
Jackson network type approachés|[ By connecting the degree-of-freedom occu-
pancy to the physical queue size, we allow these resultsnalatdor virtual queues,

to be extended to the physical queue size of nodes in a netwaoidd system.

e Simple queue managementOur approach based @een packetensures that the
sender does not have to store linear combinations of theepaak the queue to
represent the basis of the coset space. Instead, it cartis¢doasis using the original
uncoded packets themselves. Therefore, the queue foll@mwse first-in-first-out

service discipline.
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¢ Online encoding: All receivers see packets in the same order in which theyeri
at the sender. This gives a guarantee that the informatibaitdat the receiver is
restricted to a set of packets that advances in a streamingenand has a stable size
(namely, the set of unseen packets). In this sense, the ggdpmncoding scheme is

truly online.

e Easy decoding:Every transmitted linear combination is sparse — at mgsackets
are coded together for thereceiver case. This reduces the decoding complexity as

well as the overhead for embedding the coding coefficientisdérpacket header.

e Extensions: We present our scheme for a single packet erasure broadwastel.
However, our algorithm is composable across links and caaplpéed to a tandem
network of broadcast links. With suitable modificationscain potentially be ap-
plied to a more general setup like the one id][provided we have feedback. Such

extensions are discussed further in Chafter

2.3 The setup

In this chapter, we consider a communication problem whesenaler wants to broadcast

a stream of data to receivers. The data are organized ipaxkets which are essentially
vectors of fixed size over a finite field,. A packet erasure broadcast channel connects the
sender to the receivers. Time is slotted. The details of tieeiopg model and its dynamics

are described next.

The queuing model

Earlier work has studied the effect on throughput, of hawnfinite-sized buffer at the
sender to store incoming packefdl], [52]. Fixing the queue size to a finite value makes
the analysis more complicated, since we need to considérbmferflow and its effects

on the throughput. Instead, in this work, we take an appredutre we assume that the
sender has an infinite buffdare., a queue with no preset size constraints. We then study

the behavior of the expected queue size in steady state imthieof heavy traffic. This
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analysis is more tractable, and will serve as a guidelineléaiding the actual buffer sizes
while designing the system in practice.

We assume that the sender is restricted to use linear codas, @very transmission is a
linear combination of packets from the incoming streamahatcurrently in the buffer. The
vector of coefficients used in the linear combination sunimearthe relation between the
coded packet and the original stream. We assume that thifscéere vector is embedded
in the packet header. A node can compute any linear combmetnhose coefficient vector
is in the linear span of the coefficient vectors of previouslgeived coded packets. In this

context, the state of knowledge of a node can be defined asvill

Definition 3 (Knowledge of a node)The knowledge of a nodat some point in time is
the set of all linear combinations of the original packetattthe node can compute, based
on the information it has received up to that point. The coeffit vectors of these linear

combinations form a vector space called #r®wledge spacef the node.

We use the notion of a virtual queue to represent the baclkédgden the sender and
receiver in terms of linear degrees of freedom. This notias @also used in3p], [39] and

[50]. There is one virtual queue for each receiver.

Definition 4 (Virtual queue) For j = 1,2, ..., n, the size of thg"" virtual queue is defined
to be the difference between the dimension of the knowledge gifdahe sender and that

of thej'" receiver.

We shall use the termphysical queudo refer to the sender’s actual buffer, in order to
distinguish it from the virtual queues. Note that the vittgaeues do not correspond to

real storage.

Definition 5 (Degree of freedom)The termdegree of freedomefers to one dimension in

the knowledge space of a node. It corresponds to one packdt wiodata.

Definition 6 (Innovative packet)A coded packet with coefficient veciois said to be
innovativeto a receiver with knowledge spateif ¢ ¢ V. Such a packet, if successfully

received, will increase the dimension of the receiver’s kedgé space by one unit.
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Definition 7 (Innovation guarantee propertylet V' denote the sender’s knowledge space,
andV; denote the knowledge space of receiyéor j = 1,2,...,n. A coding scheme is
said to have thénnovation guarantee properify in every slot, the coefficient vector of the
transmitted linear combination is i\ V; for every; such thatV; # V. In other words,
the transmission is innovative to every receiver except whemneceiver already knows

everything that the sender knows.

Arrivals

Packets arrive into the sender’s physical queue accordiag3ernoulli processof rate\.
An arrival at the physical queue translates to an arrivabahevirtual queue since the new

packet is a new degree of freedom that the sender knows, hetafdhe receivers knows.

Service

The channel accepts one packet per slot. Each receiver ggiteves this packet with no
errors (with probability.;) or an erasure occurs (with probability — 1)). Erasures occur
independently across receivers and across slots. The/ees@ire assumed to be capable

of detecting an erasure.

We only consider coding schemes that satisfy the innovaji@rantee property. This
property implies that if the virtual queue of a receiver i$ @mpty, then a successful recep-
tion reveals a previously unknown degree of freedom to theiver and the virtual queue
size decreases by one unit. We can thus map a successfuioed®psome receiver to one
unit of service of the corresponding virtual queue. This nse@n every slot, each virtual
gueue is served independently of the others with probghilit

The relation between the service of the virtual queues aaddhvice of the physical
gueue depends on the queue update scheme used, and wilchsséid separately under

each update policy.

3We have assumed Bernoulli arrivals for ease of expositioowéver, we expect the results to hold for
more general arrival processes as well.
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Figure 2-1: Relative timing of arrival, service and depatpoints within a slot

Feedback

We assume perfect delay-free feedback. In Algorithm 1 beieadback is used to indicate
successful decoding. For all the other algorithms, theldaekl is needed in every slot to

indicate the occurrence of an erasure.

Timing

Figure2-1shows the relative timing of various events within a slot.ktivals are assumed
to occurjust after the beginningf the slot. The point of transmission is after the arrival
point. For simplicity, we assume very small propagationetinspecifically, we assume
that the transmission, unless erased by the channel, iettheeceivers before they send
feedback for that slot and feedback from all receivers reathe senddrefore the end of
the same slotThus, the feedback incorporates the current slot’s remepdso. Based on
this feedback, packets are dropped from the physical gustidefore the end of the sjot
according to the queue update rule. Queue sizes are meaguhedend of the slot.

The load factor is denoted hy= \/u. In what follows, we will study the asymptotic
behavior of the expected queue size and decoding delay uadeus policies, in the heavy
traffic limit, i.e., asp — 1 from below. For the asymptotics, we assume that either 1,
is fixed, while the other varies causipdo increase to 1.

In the next section, we first present a baseline algorithntatrgackets in the queue

until the feedback confirms that they have been decoded ihealteceivers. Then, we
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present a new queue update policy and a coding algorithnistbampatible with this rule.

The new policy allows the physical queue size to track theialrqueue sizes.

2.4 Algorithm 1: Drop when decoded (baseline)

We first present the baseline scheme which we will call Aldgponi 1. It combines a random
coding strategy with a drop-when-decoded rule for queuatgdThe coding scheme is
an online version of 16] with no preset generation size — a coded packet is formed by
computing a random linear combination of all packets culyen the queue. With such

a scheme, the innovation guarantee property will hold wigiin [probability, provided the
field size is large enough (We assume the field size is largegimio ignore the probability
that the coded packet is not innovative. It can be incorgoratto the model by assuming

a slightly larger probability of erasure because a nonimtiee packet is equivalent to an
erasure.).

For any receiver, the packets at the sender are unknowngsaghdeceived linear com-
bination is an equation in these unknowns. Decoding becpoesible whenever the num-
ber of linearly independent equations catches up with thelb&ur of unknowns involved.
The difference between the number of unknowns and numbeguHt®Nns is essentially
the backlog in degrees of freedone., the virtual queue size. Thua,virtual queue be-
coming empty translates to successful decoding at the gporeding receiverWhenever
areceiver is able to decode in this manner, it informs théeerBased on this, the sender
tracks which receivers have decoded each packet, and dpguket if it has been decoded
by all receivers. From a reliability perspective, this isg@table because there is no need

to involve decoded packets in the linear combination.

Remark 1. In general, it may be possible to solve for some of the unknewes before
the virtual queue becomes empty. For example, this coulddrajp a newly received linear
combination cancels everything except one unknown in aqusly known linear combi-
nation. It could also happen if some packets were involvedsimaset of equations that can
be solved among themselves locally. Then, even if the bggstem has more unknowns

than equations, the packets involved in the local systenbeattecoded. However, these
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Figure 2-2: Markov chain representing the size of a virtusup. Here\ := (1 — )\) and
o= (1—p).

are secondary effects and we ignore them in this analysisivRntly, we assume that if
a packet is decoded before the virtual queue becomes efmmpisender ignores the occur-
rence of this event and waits for the next emptying of thealiqueue before dropping the
packet. We believe this assumption will not change the asjimbiehavior of the queue
size, since decoding before the virtual queue becomingyeisptrare event with random

linear coding over a large field.

2.4.1 The virtual queue size in steady state

We will now study the behavior of the virtual queues in stesidye. But first, we introduce
some notation:
Q(t) :=Size of the sender’s physical queue at the end oftslot
Q;(t) := Size of thej*" virtual queue at the end of slat
Figure 2-2 shows the Markov chain fof),(¢). If A < p, then the chaiQ;(t)} is

positive recurrent and has a steady state distributiomdiyg53):
mp = lim PQ;(t) = k] = (1 - a)a®, k>0, (2.1)

_ A1=p)
wherea = EESVE

Thus, the expected size of any virtual queue in steady Stafeen by:

Jim BIQ; (1)) = 3 jm = (1= n) - £ ok (2.2)

Next, we analyze the physical queue size under this scheme.
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2.4.2 The physical queue size in steady state

The following theorem characterizes the asymptotic badravi the queue size under Al-
gorithm 1 in the heavy traffic limitj.e., as the load on the system approaches capacity
(p — 1). We assume that and . are themselves away from 1, but only their ratio ap-
proaches 1 from below. Comparing with Equati@n, this result makes it clear that the

physical queue size does not track the virtual queue size.

Theorem 1. The expected size of the physical queue in steady state dorithim 1 is
Proof. Let T' be the time an arbitrary arrival in steady state spends iphiysical queue
before departure, excluding the slot in which the arrivaluws (Thus, if a packet departs
immediately after it arrives, thef’ is 0.). A packet in the physical queue will depart
when each virtual queue has become empty at least once snaeival. LetD; be the
time starting from the new arrival, till the next emptyingtbg ;" virtual queue. Then,
T = max; D; and soE[T] > E[D,]. Hence, we focus oR[D;|.

We condition on the event that the state seen by the new Bustabefore it joins the
gueue, is some state There are two possibilities for the queue state at the erigeo$lot
in which the packet arrives. If the channel is ON in that slo¢n there is a departure and
the state at the end of the slotiisIf the channel is OFF, then there is no departure and the
state is(k + 1). Now, D, is simply the first passage time from the state at the end of tha
slot to state 0i.e., the number of slots it takes for the system to reach state théofirst
time, starting from the state at the end of the arrival sletIL, , denote the expected first
passage time from stateto statev. The expected first passage time from state state 0,

for u > 0 is given by the following expression:

u

Iuo= .
70 M_>\

This can be derived as follows. Consider the Markov cHai(¢)} for the virtual

gueue size, shown in Figute2. Assume that the Markov chain has an initial distribu-
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tion equal to the steady state distribution (Equivalerggsume that the Markov chain has

reached steady state.). We use the same notation as inrS&etio

Define N, := inf{t > 1: Q;(t) = m}. We are interested in deriving far > 1, an

expression fof'; o, the expected first passage time from state 0, i.e.,

[io = E[No|Q;(0) = kJ.

Define for: > 1:

X; 2 a(i) — d(i)

where,a(7) is the indicator function for an arrival in slgtandd(7) is the indicator function
for the channel being on in slot Let S, 2 "', X;. If Q;(t) > 0, then the channel being
on in slott implies that there is a departure in that slot. Thus the spoedence between

the channel being on and a departure holds fob allt < N,y. This implies that:
fort < No, Qj(t) = QJ(O) + 5.

Thus, N, can be redefined as the smallest 1 such thatS; reaches-@);(0). Thus,N; is a
valid stopping rule for theéX;’s which are themselves 11D, and have a m&aX | = (A —p).
We can findE[Vy] using Wald'’s equality$4]:

E[Sn,|@;(0) = k] = E[No|Q;(0) = k] - E[X]

Le., — k= E[NolQ;(0) = K] - (A — ),

which gives:
k

ko = E[No|Q;(0) = &] A
Now, because of the property that Bernoulli arrivals see twerages (BASTA)45],
an arbitrary arrival sees the same distribution for the gfzbe virtual queues, as the steady

state distribution given in Equatiog.Q).
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Using this fact, we can compute the expectatiogfas follows:

E[D;] = > P(New arrival sees state)E[D;|Statek]

k=0

= Z Tl o + (1 — )T )
k=0
—~ pk (- p)(k+1)

- Yo )
k=0 =
L—p P

- : . (2.3)

poo (1=p)?

Now, the expected time that an arbitrary arrival in steadyesspends in the system is
given by:

E[7] = Elmax D;] > E[D)] = © (ﬁ) .

Since each virtual queue is positive recurrent (assuming ), the physical queue will
also become empty infinitely often. Then we can use Littleis to find the expected

physical queue size.

The expected queue size of the physical queue in steadyifstageuse algorithm 1 is

given by:
. 1
lim E[Q(#)] = AE[T] = (m) ~
This completes the proof. n

2.5 Algorithm 2 (a): Drop common knowledge

In this section, we first present a generic algorithm thatates at the level of knowledge
spaces and their bases, in order to ensure that the physieatcsize tracks the virtual
gueue size. Later, we shall describe a simple-to-implemeanéant of this generic algo-

rithm.
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2.5.1 Anintuitive description

The aim of this algorithm is to drop as much data as possiloie fthe sender’s buffer
while still satisfying the reliability requirement and tirenovation guarantee property. In
other words, the sender should store just enough data sib ¢hatalways compute a linear
combination which is simultaneously innovative to all neees who have an information
deficit. As we shall see, the innovation guarantee propersuificient for good perfor-

mance.

After each slot, every receiver informs the sender whethegrasure occurred, using
perfect feedback. Thus, there is a slot-by-slot feedbagkirement which means that the
frequency of feedback messages is higher than in Algorithith& main idea is to exclude
from the queue any knowledge that is known to all the recsivéore specifically, the
gueue’s contents must correspond to some basis of a ve@oe $pat is independent of
the intersection of the knowledge spaces of all the receivéfe show in Lemma& that
with this queuing rule, it is always possible to compute adincombination of the current
contents of the queue that will guarantee innovation, ag &mthe field size is more than

n, the number of receivers.

The fact that the common knowledge is dropped suggests alarogluincremental
approach to the sender’s operations. Although the knowaepaces of the receivers keep
growing with time, the sender only needs to operate with tiogeption of these spaces on
dimensions currently in the queue, since the coding mocags dot care about the remain-
ing part of the knowledge spaces that is common to all receivEhus, the algorithm can
be implemented in an incremental manner. It will be showntthia incremental approach

is equivalent to the cumulative approach.

Table2.2shows the main correspondence between the notions usegluintloded case
and the coded case. We now present the queue update algtwithally. Then we present
theorems that prove that under this algorithm, the physjoalie size at the sender tracks

the virtual queue size.

All operations in the algorithm occur over a finite field ofesiz > n. The basis of a

node’s knowledge space is stored as the rows of a basis malrérepresentation and all
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Uncoded Networks

Coded Networks

Knowledge Set of received packets Vector space spanned by the coeffi-
represented cient vectors of the received line
by combinations

Amount  of | Number of packets received| Number of linearly independent
knowledge (innovative) linear combinations @

packets receivedi.€., dimension of
the knowledge space)

Queue stores

All undelivered packets

Linear combination of packets whig
form a basis for theoset spacef the
common knowledge at all receivers

Update rule
after each
transmission

If a packet has been receive
by all receivers drop it.

2dRecompute the common knowled
spaceV,; Store a new set of lineg
combinations so that their span is i
dependent of/a

Table 2.2: The uncoded vs. coded case

operations are in terms of local coefficient vectass.(with respect to the current contents

of the queue) and not global oneg( with respect to the original packets).

2.5.2 Formal description of the algorithm

Algorithm 2 (a)

1. Initialize basis matrice8, By, ..

of the incremental knowledge spaces of the sender and egseivthat order.

mitted packet in each slot.

In every time slot, do:

Incorporate new arrivals:

., B,, to the empty matrix. These contain the bases

Initialize the vectog to the zero vector. This will hold the coefficients of the gan

Let a be the number of new packets that arrived at the beginningeo$iot. Place

these packets at the end of the queue. R é&aveb rows. SetB to 1. (1, denotes

the identity matrix of sizen.) Note thatB will always be an identity matrix. To

make the number of columns of all matrices consisteat equal toa + b), append

a all-zero columns to each;.
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4. Transmission:

If Bis not empty, updatg to be any vector thatis ispan(5), but notinUy;.z, c gyspan(B;).

(Note: span(B) denotes the row space 6f)

Lemma2 shows that suchgexists. Lety,,y2, ... yq represent the current contents
of the queue, where the queue se= (a + b). Compute the linear combination
Z?Zl g;y; and transmit it on the packet erasure broadcast channglisiempty, set

g to 0 and transmit nothing.
5. Incorporate feedback:
Once the feedback arrives, for every receiyvet 1 ton, do:
If g # 0 and the transmission was successfully received by recgiwethis
slot, appeng; as a new row tas;.

6. Separate out the knowledge that is common to all receivers:

Compute the following (the set notation used here consitiersnatrices as a set of

row vectors):

Ba = Any basis of7_, span(B;).

B’ := Completion ofB, into a basis okpan(B).
B’ = B\Ba.
B; = Completion ofB4 into a basis okpan(B;) in such a way that, if we

define B} := B’\Ba, then the following holdsB} C span(B”).

Lemmal proves that this is possible.
7. Update the queue contents:
Replace the contents of the queue with packgty, . . . yq of the formZ?:1 h;yi
for eachh € B”. The new queue siz@’ is thus equal to the number of rows i1
8. Recompute local coefficient vectors with respect to the n@uejaontents:

Find a matrixC}; such thatB] = X;B” (this is possible becaude/ C span(B")).
Call X; the newB;. Update the value ab to .
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9. Go back to step 3 for the next slot.

The above algorithm essentially removes, at the end of dathtse common knowl-
edge (represented by the basilg) and retains only the remaindées”. The knowledge
spaces of the receivers are also represented in an incranegtner in the form of37,
excluding the common knowledge. Sing¥ C span(B”), the B} vectors can be com-
pletely described in terms of the vectorsi. It is as if By has been completely removed
from the entire setting, and the only goal remaining is tovegpan(B”) to the receivers.
Hence, it is sufficient to store linear combinations coroggping to B” in the queue.B”

and B} get mapped to the new and B;, and the process repeats in the next slot.

Lemma 1. In step 5 of the algorithm above, it is possible to complgieinto a basisB;

of eachspan(B;) such thatB} C span(B").

Proof. We show that any completion @, into a basis okpan(B;) can be changed to a
basis with the required property.

Let Bn = {by,b2,...,bn}. Suppose we complete this into a basisof span(B;)
such that:

Cj = BaU{cy,Ca, .., CBj|-m}-

Now, we claim that at the beginning of stepspan(B;) C span(B) for all j. This can
be proved by induction on the slot number, using the way therdhm updates3 and the
Bj’s. Intuitively, any receiver knows a subset of what the sgriachows.

Therefore, for each vecterc C;\ Ba, c must also be inpan(B). Now, sinceBaUB”
is a basis ofpan(B), we can writec asy .-, «;b;+c’ with ¢’ € span(B”). In this manner,
eachc; gives a distinct. Itis easily seen that’} := Ba U {c],c5, ... 7C\,Bj|—m} is also
a basis of the same space that is spanned’byMoreover, it satisfies the property that

C:\Ba C span(B"). O

Lemma 2. LetV be a vector space with dimensiégnover a field of size;, and let
V1, Vo, ... V,, be subspaces of, of dimensiong:, ks, . .., k, respectively. Suppose that
k> k;forall i =1,2,...,n. Then, there exists a vector that isWirbut is not in any of the

V;'s, if ¢ > n.
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Proof. The total number of vectors i is ¢". The number of vectors iw; is ¢":. Hence,

the number of vectors in¥_,V; is at mosth:l q". Now,
SF gt < kgtmer < kgl < g

where,n, ., is max; n;, which is at mostn — 1). Thus,V has more vectors than}_, V;.

This completes the proof. m

This lemma is also closely related to the result46]] which derives the smallest field

size needed to ensure innovation guarantee.

2.5.3 Connecting the physical and virtual queue sizes

In this subsection, we will prove the following result thatates the size of the physical
gueue at the sender and the virtual queues, which themssnwespond to the backlog in

degrees of freedom.

Theorem 2. For Algorithm 2 (a), the physical queue size at the sendeppgeu bounded
by the sum of the backlog differences between the sender ahdexiver in terms of the

number of degrees of freedom.

Let a(¢) denote the number of arrivals in slotand letA(t) be the total number of
arrivals up to and including slat i.e., A(t) = >_,_,a(t'). Let B(t) (resp. B;(t)) be the
matrix B (resp. B,) after incorporating the slatarrivals,i.e., at the end of step 3 in slot
Let H(t) be a matrix whose rows are tigdobal coefficient vectors of the queue contents
at the end of step 3 in time slgti.e., the coefficient vectors in terms of the original packet
stream. Note that each row &f(¢) is in F; .

Let g(¢) denote the vectog at the calculated in step 4 in time slgti.e., the local
coefficient vector of the packet transmitted in slotAlso, let Ba(t) (resp. B”(t), Bi(t)
andBj(t)) denote the matrixs (resp.B”, B; and BY) at the end of step 6 in time slat

Lemma 3. The rows off (¢) are linearly independent for atl.
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Proof. The proof is by induction on.

Basis step:n the beginning of time slot 15(1) packets arrive. Saif(1) = I, and
hence the rows are linearly independent.

Induction hypothesisAssumeH (¢t — 1) has linearly independent rows.

Induction step:The queue is updated such that the linear combinationsspmneling
to local coefficient vectors iB” are stored, and subsequently, ti{e) new arrivals are

appended. Thus, the relation betwdéft — 1) and H () is:

o | B 1())H(t _1) ]0
a(t)

Now, B”(t—1) has linearly independent rows, since the rows form a basie.rdws of
H(t—1) are also linearly independent by hypothesis. Hence, the odWw" (t— 1) H(t —1)
will also be linearly independent. Appending) zeros and then adding an identity matrix
block in the right bottom corner does not affect the linealeipendence. Hencg(t) also

has linearly independent rows. ]

Define the following:

U(t) = Row span offf(t)

U;(t) = Row span ofB;(t)H (t)
Ul(t) = Row span ofB)(t)H (t)
UA(t) = i Uj(t)

U"(t) = Row span ofB”(t)H(t)
U'(t) = RowspanofB/(t)H(t).

All the vector spaces defined above are subspacﬁé@f Figure2-3 shows the points
at which these subspaces are defined in the slot.

The fact thatH (¢) has full row rank (proved above in Lemn3implies that the op-
erations performed by the algorithm in the domain of the llcofficient vectors can be

mapped to the corresponding operations in the domain ofltbcoefficient vectors:

1. The intersection subspat@ (t) is indeed the row span @ (t)H(t).
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STEP 6
Separate out
common
STEP 5 knowledge
Incorporate channel
state feedback
STEPS u,o,v', (@
Incorporate arrivals ] )
of slot 7 | UV () Va @V, 0
U,(0),V,1) u"@,u"; )
|
Slot (-1) Slot ¢

Figure 2-3: The main steps of the algorithm, along with tinees at which the various
U(t)’s are defined

2. LetR;(t) be an indicator (0-1) random variable which takes the valifeatid only
if the transmission in slot is successfully received without erasure by receiver
and in addition, receiver does not have all the information that the sender has. Let
&(t) == R;(1)g(t)H(1). Then,

Uj(t) = U;(t) & span(g;(t)) (2.4)

J

where® denotes direct sum of vector spaces. The way the algorittonsesg ()
guarantees that iR;(¢) is non-zero, therg;(t) will be outside the corresponding
U;(t), i.e, it will be innovative. This fact is emphasized by the diream in this

equation.

3. Because of the way the algorithm performs the completicdh@bases in the local

domain in step 6, the following properties hold in the glothamain:

Ut) = UL @ U" () (2.5)
Ul(t) = Us(t)@U(t) and, (2.6)
Uty < U'(t), Vi=1,2...n. 2.7)

From the above properties, we can infer thiétt) + UJ (¢) + ... U//(t) C U"(t). After
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incorporating the arrivals in slat+ 1, this givesU; (t + 1) + Us(t + 1) + ... U,(t + 1) C

U(t + 1). Since this is true for all, we write it as:

Up(t) + Us(t) + ... Un(t) C U (D). (2.8)

Now, in order to relate the queue size to the backlog in nurabdegrees of freedom,
we define the following vector spaces which representctiraulativeknowledge of the

sender and receivers (See Figdra for the timing):

V(t) = Sender's knowledge space after incorporating the arrfzlthe end of

step 3) in slot. This is simply equal tszf(t)

"
~~
~~
~—
>

Receiver;’s knowledge space at the end of step 3 in slot

N
~—~
~+
~—
1>

Receiver;’s knowledge space in sla@t after incorporating the channel
state feedback intdj(t), i.e, V;(t) = V;(t) @ span(gj(t)).

Valt) & nmiVi()

VA(t) & Vi)

For completeness, we now prove the following facts aboeidisums of vector spaces

that we shall use.

Lemma 4. LetV be a vector space and l&k, Uy, Us, . . . U, be subspaces éf such that,
Va is independent of the span of all the's, i.e., dim[Va N (U + Uy + ...+ U,)] = 0.
Then,

Va @ [N Uil =N, [Va @ Uil .

Proof. For anyz € Va & N, U;, there is ar € V andy € N, U, such that: = = + .
Now, for eachi, y € U;. Thus,z = x + y implies thatz € N, [Va @ U;]. Therefore,
Va® N U; €N [Va & U

Now, letw € N, Va @ U;. Then for each, there is ar; € Va andy; € U, such that
w = z;+vy,;. But,w = z;+y, = x; +y; means that; —x; = y; —y;. Now, (z; — ;) € Va
and(y; —y;) € (Uy + Uy + ... + U,). By hypothesis, these two vector spaces have only
0 in common. Thusy; — z; = y; — y; = 0. All the z;'s are equal to a comman € Vx

and all they;’s are equal to a common which belongs to all thé/;’s. This meansw
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can be written as the sum of a vectorlin and a vector im}"_,U;, thereby proving that

Nz [Va © U] € Va & N, Ui u

Lemmab. Let A, B, andC be three vector spaces such ttais independent of’ and A

is independent oB & C'. Then the following hold:

1. Aisindependent of.

2. A® Bisindependent of .

3. A® (B C)=(A®B) @ C.

Proof. Statement follows from the fact thaf3 is a subset oB& C. Hence, ifAN(B & C)
is empty, soisA N B.

For statemen®, we need to show thdtd & B) N C' = {0}. Consider any element
x € (A® B)nC. SinceitisinA @ B, there exist uniqgua € A andb € B such that
x = a+ b. Now, sinceb € B andx € C, it follows thata = x —cisin B& C. Itis
also inA. SinceA is independent oB @ C, a must be0. Hencex = b. But this means
x € B. Sinceitis also irC, it must be0, asB andC' are independent. This shows that the

only elementin A& B) ¢ C'is0.

Statemen8 can be proved as follows.

xcAd (B )
<3Juniqueac A, de BeCstx=a+d
<Junigueac A,be Bce(Cst.x=a+b+c
<3Juniqguee e A B,ceCst.x=e+c

exec(AeB)aC
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Theorem 3. Forall ¢t > 0,

V(t) = Valt)aU()
Vi(t) = Valt)®eU;(t) Vj=1,2,...n
VAt) = Va(t) ® UA(?).

Proof. The proof is by induction on.
Basis step:

Att =0, V(0),U(0) as well as all thé’;(0)'s andU,(0)’s are initialized to{0}. Con-
sequentlyVx (0) is also{0}. It is easily seen that these initial values satisfy the gqoa

in the theorem statement.

Induction Hypothesis:

We assume the equations hold gte.,

V() = Va(t)aU(¥) (2.9)
Viit) = Valt)®eU;(t),Vi=1,2,...n (2.10)
VA(t) = Va(t) ® Ux(t) (2.11)

Induction StepWe now prove that they hold in slét + 1). We have:

V(t)=Vat) @ U(t) (from (2.9)
= Va(t) ® [UA(t) ® U"(1)] (from (2.5)
= [Va(t) @ Ur(t)] ® U"(¢) (Lemmab)
=Va(t) ® U"(¢) (from (2.11)).

Thus, we have proved:
V(t) = V() e U"(t). (2.12)

Now, we incorporate the arrivals in sl@t+ 1). This convertd/} (¢) to Va(t+1), U"(t)
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toU(t+ 1), andV(¢) to V(¢ + 1), owing to the following operations:

Basis ofVa(t +1) =

BasisofU(t+1) =

BasisofV(t+1) =

Basis of V{(t) 0 }

Basis ofU”(t) 0
0 ]a(t+1)

[ Basisofl/(t) 0 ]

0 Tagt41)

Incorporating these modifications intd.{2), we obtain:

Vit+1)=Valt+ ) Ut +1).

Now, consider each receivgr= 1,2, ... n.

V(1)

J

= V;(t) @ span(g;(t))

= [Va(t) ® U;(t)] ® span(g;(?))

= Va(t) @ [U;(t) © span(g;(t))]

= Va(t) ® Uj(t)
= Va(t) & [UA(t) & Uj (¢)]
= [Va(t) @ Up(t)] © Uj (1)
= VA(t) @ U (1)

Incorporating the new arrivals into the subspaces invoba@dinga(t + 1) all-zero
columns to the bases df/(t), VA(t), andUJ(t), thereby converting them into bases of

Vi(t +1),Va(t + 1), andU,(t + 1) respectively. These changes do not affect the above

relation, and we get:

(Lemmab)
(from (2.4))
(from (2.6))

(Lemmab)

(from (2.110)).

Vit +1)=Vat+1) @ U;(t+1), Vj=1,2,...n.
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Finally,
VAt +1)

= ﬂ?:ﬂ/j/(t +1)

= My [Vi(t+1) © span(g(t + 1))]

iy [Va(t +1) @ Uy(t + 1) @ span(g;(t + 1))]

—
S)
N

2 VAR 1) @ N [Us (1 + 1) @ span(g;(t +1))]

Va(t+1) @ Up(t + 1).

Step(a) is justified as follows. Using equatiofi.g) and the fact thag;(¢ + 1) was chosen
to be insidd/ (¢ + 1), we can show that the span of all & (¢ + 1) & span(g;(t+1))]'s is
insideU (t+ 1). Now, from the induction step abovE, (¢ + 1) is independent of/ (¢ + 1).
Therefore VA (t + 1) is independent of the span of all tR&; (¢ + 1) & span(g;(t + 1))]’s.
We can therefore apply Lemmda O

Theorem 4. Let Q(t) denote the size of the queue after the arrivals in slbave been
appended to the queue.
Q(t) = dim V(t) — dim Va(t).

Proof. Q(t) = dim U(t) = dim U"(t — 1) + a(t)

=dimU(t —1)—dim Ux(t — 1) + a(t)
(using €.9))

=dim V(t —1) —dim Va(t — 1) — dim U5 (t) + a(t)
(from Theorent)

=dim V(t — 1) — dim VA(t) + a(t)
(from TheorenB)

= dim V (t) — dim Va(2).
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Lemma 6. LetVy, V4, ..., V, be subspaces of a vector spd¢eThen, fork > 1,

dim(VinVan...0 Vi) > dim(V;) = (k — 1)dim(V).

Proof. For any two subspaces andY of V,
dim(X NY)+dim(X +Y)=dim(X)+ dim(Y)

whereX + Y denotes the span of subspacéesndY.
Hence,
dim(XNY) = dim(X)+dim(Y) —dim(X +Y)

> dim(X) +dim(Y') — dim(V')

(sinceX + Y is also a subspace of).

Now, we prove the lemma by induction én
Basis step:
k=1:LHS =dim(V}), RHS =dim(V})

k =2 :LHS = dim(Vi N V3), RHS =dim(V}) + dim(V3) — dim(V).

The claim follows from inequalityd.13).
Induction Hypothesis:

For some arbitrary,

dim(NEZ1V;) > Zdzm — (k= 2)dim(V).

Induction Step:
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dim(NF_,V;) = dim(V, 0 N1 V)

> dim(Vk)+dz’m(ﬂf‘11V)—dim(V) (using @.13)
> dim(Vy,) + Zdzm (k — 2)dim(V)
—dim(V')

k
= Y dim(V;) — (k = L)dim(V).
=1
The above result can be rewritten as:

k
dim(V) — dim(ViNVan ... V) < Z [dim(V) — dim(V})]. (2.14)

Using this result, we can now prove Theore@m

Proof of Theoren®: If we apply Lemma6 to the vector spacels;(t),j = 1,2,....n
andV'(t), then the left hand side of inequality.(4) becomes the sender queue size (using
Theoremd), while the right hand side becomes the sum of the differemtédacklog be-
tween the sender and the receivers, in terms of the numbesgoéds of freedom. Thus,

we have proved Theoreth

2.6 Algorithm 2 (b): Drop when seen

The drop-when-seen algorithm can be viewed as a specialegaht of the generic Al-
gorithm 2 (a) given above. It uses the notion of seen packietned in Sectior2.1) to
represent the bases of the knowledge spaces. This leadsipla and easy-to-implement
version of the algorithm which, besides ensuring that malsjueue size tracks virtual
gueue size, also provides some practical benefits. Fomicestahe sender need not store
linear combinations of packets in the queue like in AlgontR (a). Instead only origi-
nal packets need to be stored, and the queue can be operateihmple first-in-first-out

manner. We now present some mathematical preliminariesddéscribing the algorithm.
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2.6.1 Some preliminaries

The newly proposed algorithm uses the notion of reduced whwelen form (RREF) of a
matrix to represent the knowledge of a receiver. Hence, wericapitulate the definition
and some properties of the RREF frodd], and present the connection between the RREF

and the notion of seeing packets.

Definition 8 (Reduced row echelon form (RREF)) matrix is said to be in reduced row

echelon form if it satisfies the following conditions:
1. The first nonzero entry of every row is 1.

2. The first nonzero entry of any row is to the right of the firshzero entry of the

previous row.
3. The entries above the first nonzero row of any row are atl.zer

The RREF leads to a standard way to represent a vector spacen &wector space,
consider the following operation — arrange the basis vedtoany basis of the space as
the rows of a matrix, and perform Gaussian elimination. Phgcess essentially involves
a sequence of elementary row transformations and it preadaaenique matrix in RREF
such that its row space is the given vector space. We calliBi®RREF basis matrix of the
space. We will use this representation for the knowledgeespéthe receivers.

Let V' be the knowledge space of some receiver. Suppogackets have arrived at
the sender so far. Then the receiver’s knowledge considisear combinations of some
collection of thesen packetsj.e., V' is a subspace df;'. Using the procedure outlined
above, we can compute tdén (1) x m RREF basis matrix oV’ overF,,.

In the RREF basis, the first nonzero entry of any row is callguvat Any column
with a pivot is called givot column By definition, each pivot occurs in a different column.
Hence, the number of pivot columns equals the number of monmeevs, which islim[V].
Let px denote the packet with indeéx The columns are ordered so that colulnmaps
to packetpy. The following theorem connects the notion of seeing pactethe RREF

basis.
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Theorem 5. A node has seen a packet with indexf and only if thek!” column of the

RREF basig3 of the knowledge spadé of the node is a pivot column.

Proof. The ‘if’ part is clear. If columnk of B is a pivot column, then the corresponding
pivot row corresponds to a linear combination known to théeyof the formp +q, where
q involves only packets with index more th&nThus, the node has sepq.

For the ‘only if’ part, suppose columh of B does not contain a pivot. Then, in any
linear combination of the rows, rows with pivot after colufgannot contribute anything
to columnk. Rows with pivot before colum will result in a non-zero term in some
column to the left oft. Since every vector i’ is a linear combination of the rows &f,
the first non-zero term of any vector incannot be in columt. Thus,py could not have

been seen. O

Since the number of pivot columns is equal to the dimensiothefvector space, we

obtain the following corollary.

Corollary 1. The number of packets seen by a receiver is equal to the diomeokits

knowledge space.
The next corollary introduces a useful concept.

Corollary 2. If receiverj has seen packet,, then it knows exactly one linear combination

of the formpy + q such thaig involves onlyunseenpackets with index more than

Proof. We use the same notation as above. The receiver hagpgeétence, columrk in
B is a pivot column. By definition of RREF, in the row containing ftieot in columnk,
the pivot value is 1 and subsequent nonzero terms occur emgn-pivot columns. Thus,
the corresponding linear combination has the given fpimt+ q, whereq involves only
unseerpackets with index more than

We now prove unigueness by contradiction. Suppose thevexdanows another such
linear combinatiorpy + ' whereq' also involves only unseen packets. Then, the receiver
must also knowq — q'). But this means the receiver has seen some packet involved in

eitherq or q' — a contradiction. O
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Seen Unseen

A |
I " 1

Decoded
l_‘ﬁ
Pi P> P3 Ps Ps Ps P7 Ps
1 0 Basis of knowledge
1 0 .—  spacein RREF
1 | -
( 1 [ - ) [<—— Witness for p,
1 | -------
Number of seen packets = Rankof matrix = Dim of knowledge space

Figure 2-4: Seen packets and witnesses in terms of the basism
Definition 9 (Witness) We denote the unique linear combination guaranteed by Guoll

2 as Wj(px), thewitness for receivej seeingpy.

Figure2-4 explains the notion of a seen packet and the notion of a vatmeterms of
the basis matrix.

Example: Suppose a node knows the following linear combinaticns: (p; + p2)
andy = (p1 + ps). Since these are linearly independent, the knowledge dpasea
dimension of 2. Hence, the number of seen packets must besZIdar that packgi, has
been seen, since satisfies the requirement of Definiti@ Now, the node can compute
z = x —y = (p2 — ps). Thus, it has also seqs,. That meangs is unseen. Hencs; is

the witness folp;, andz is the witness fop..

2.6.2 The main idea

The central idea of the algorithm is to keep track of seeng@iadkstead of decoded packets.
The two main parts of the algorithm are the coding and quedatepmodules.

In Section2.6.5 we present the formal description of our coding module. dding
module computes a linear combinatigrthat will cause any receiver that receives it, to
see its next unseen packet. First, for each receiver, thdes@omputes its knowledge
space using the feedback and picks out its next unseen p&2kistthese packets will be
involved ing, and hence we call them th&nsmit set Now, we need to select coefficients

for each packet in this set. Clearly, the receiver(s) waitingee the oldest packet in the
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transmit set (sap,) will be able to see it as long as its coefficient is not zero. <tier a
receiver that is waiting to see the second oldest packekitrémsmit set (sap»). Since
the receiver has already sepp, it can subtract the witness fer;, thereby canceling it
from g. The coefficient ofp, must be picked such that after subtracting the witness for
p1, the remaining coefficient gb, in g is non-zero. The same idea extends to the other
coefficients. The receiver can cancel packets involveg that it has already seen by
subtracting suitable multiples of the corresponding veses. Therefore, the coefficients
for g should be picked such that for each receiver, after cargéfia seen packets, the
remaining coefficient of the next unseen packet is non-z@ien, the receiver will be
able to see its next unseen packet. Theo8gpnoves that this is possible if the field size
is at leastn, the number of receivers. With two receivers, the coding med a simple
XOR based scheme (see Tahld). Our coding scheme meets the innovation guarantee
requirement because Theorénmplies that a linear combination that would cause a new
packet to be seen brings in a previously unknown degree edfe.

The fact that the coding module uses only the next unseerepatéll receivers readily
implies the following queue update rulBrop a packet if all receivers have seen itThis

simple rule ensures that the physical queue size tracksribahgueue size.

Remark 2. In independent work 48] proposes a coding algorithm which uses the idea of
selecting those packets for coding, whose indices are one than each receiver’s rank.
This corresponds to choosing the next unseen packets ipdogscase where packets are
seen in order. Moreover, this algorithm picks coding cokfits in a deterministic manner,
just like our coding module. Therefore, our module is clpselated to the algorithm of
[49].

However, our algorithm is based on the framework of seen ps.ckéis allows several
benefits. First, it immediately leads to the drop-when-saeug management algorithm,
as described above. In contrastiq does not consider queuing aspects of the problem.
Second, in this form, our algorithm readily generalizesie tase where the coding coeffi-
cients are picked randomly. The issue with random codingasghckets may be seen out
of order. Our algorithm will guarantee innovation even ingluase (provided the field is

large), by selecting a random linear combination of the nawdeen packets of the receivers

66



(the reasoning is similar to the arguments ih?]). However, the algorithm of48] may
not work well here, as it may pick packets that have already lseen, which could cause
non-innovative transmissions.

The compatibility of our algorithm with random coding makegarticularly useful
from an implementation perspective. With random codingheaceiver only needs to
inform the sender the set of packets it has seen. There is e toeconvey the exact
knowledge space. This can be done simply by generating a k€Rtimulative ACK upon
seeing a packet. Thus, the ACK format is the same as in traditibRQ-based schemes.

Only its interpretation is different.

We next present the formal description and analysis of tleeigqupdate algorithm.

2.6.3 The queuing module

The algorithm works with the RREF bases of the receivers’ kedgé spaces. The co-
efficient vectors are with respect to the current queue obsi@nd not the original packet
stream.

Algorithm 2 (b)

1. Initialize matricesBy, Bs, . . ., B, to the empty matrix. These matrices will hold the

bases of the incremental knowledge spaces of the receivers.

2. Incorporate new arrivalsSuppose there arenew arrivals. Add the new packets to
the end of the queue. Appendll-zero columns on the right to eaéh for the new

packets.

3. Transmission: If the queue is empty, do nothing; else compgtasing the coding
module and transmit it.

4. Incorporate channel state feedback:
For every receivej = 1 ton, do:

If receiver; received the transmission, include the coefficient vectgyia terms of

the current queue contents, as a new rousjnPerform Gaussian elimination.
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5. Separate out packets that all receivers have seen:
Update the following sets and bases:
S’ = Set of packets corresponding to the pivot columngpf
Sh =008
New B; := Sub-matrix of currenf3; obtained by excluding columns i1, and cor-
responding pivot rows.

6. Update the queueDrop the packets i, .

7. Go back to step 2 for the next slot.

2.6.4 Connecting the physical and virtual queue sizes

The following theorem describes the heavy traffic asymptbghavior of the expected

physical queue size under our new queuing rule.

Theorem 6. For Algorithm 2 (b), the physical queue size at the sendepper-bounded by
the sum of the virtual queue sizés,, the sum of the degrees-of-freedom backlog between
the sender and the receivers. Hence, the expected sizefiyseal queue in steady state
for Algorithm 2 (b) isO (fp)

In the rest of this section, we shall prove the above resuttw,Nn order to relate the
gueue size to the backlog in number of degrees of freedomhaié rseed the following

notation:

S(t) = Set of packets arrived at sender till the end of slot

V(t) = Sender’s knowledge space after incorporating the arriegtot £. This is simply
equal toF,”®)!

V;(t) £ Receiverj’s knowledge space at the end of sfott is a subspace df (¢).

S;(t) = Set of packets receivgrhas seen till end of slat
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We shall now formally argue that Algorithm 2 (b) indeed implents the drop-when-
seen rule in spite of the incremental implementation. In sioy, the columns of3; are
updated as follows. When new packets are appended to the,queueolumns are added
to B, on the right. When packets are dropped from the queue, camespy columns
are dropped fromB,. There is no rearrangement of columns at any point. Thisieapl
that a one-to-one correspondence is always maintainedebatthe columns of3; and
the packets currently in the queue. Lét(t) be the row space oB; at time¢. Thus,
if (ui,ug, ..., uge) is any vector inU;(t), it corresponds to a linear combination of the
form Zg? u;p;, Wherep; is thei® packet in the queue at tinte The following theorem

connects the incremental knowledge spégg) to the cumulative knowledge spatgt).

Theorem 7. In Algorithm 2 (b), for each receiver, at the end of slot, for anyu € Uj (1),
the linear combinationzg? u;p; is known to the receivef, wherep; denotes the'”

packet in the queue at tinte

Proof. We shall use induction oh Fort = 0, the system is completely empty and the
statement is vacuously true. Let us now assume that therstatds true at timeé¢ — 1).
Consider the operations in slat A new row is added td3; only if the corresponding
linear combination has been successfully received byvecg¢i Hence, the statement is
still true. Row operations involved in Gaussian eliminatdm not alter the row space.
Finally, when some of the pivot columns are dropped alon@ e corresponding pivot
rows in step 5, this does not affect the linear combinationghich the remaining rows
correspond because the pivot columns have a 0 in all rowgéenue pivot row. Hence, the
three operations that are performed between(sletl) and slott do not affect the property
that the vectors in the row space8f correspond to linear combinations that are known at

receiverj. This proves the theorem. O

If a packet corresponds to a pivot columniy, the corresponding pivot row is a linear
combination of the packet in question with packets thavediafter it. From the above
theorem, receivej knows this linear combination which means it has seen th&egbac

This leads to the following corollary.
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Corollary 3. If a packet corresponds to a pivot column iy, then it has been seen by

receiverj.

Thus, in step 55’4 (¢) consists of those packets in the queue that all receiverssesn
by the end of slot. In other words, the algorithm retains only those packeds tfave
not yet been seen by all receivers. Even though the algostbriks with an incremental
version of the knowledge spaces, namglyt), it maintains the queue in the same way
as if it was working with the cumulative versidr)(¢). Thus, the incremental approach is

equivalent to the cumulative approach.

We require the following lemma to prove the main theorem.

Lemma 7. LetA,, A,, ..., A, be subsets of a set. Then, fork > 1,
k
Al =N, A Z Al = [Ai]). (2.15)

Proof.

Al = | NEy Al
= AN (N Ay (since theA,’s are subsets aof)
= |An (U, A9)| (by De Morgan’s law)

= |UM, (AN A9 (distributivity)
k

< > |AN A¢| (union bound)
=1
k

= > (A4l

i=1

Now, we are ready to prove Theordin

Proof of Theoren®: Since the only packets in the queue at any point are thosadhat

all receivers have seen, we obtain the following expresothe physical queue size at
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the sender at the end of slot
Q) = |S@)| — [Ny S;(t)].

If we apply Lemma7 to the setsS(¢) and S;(t),j = 1,2,...,n then the left hand
side of inequality 2.15 becomes the sender queue sizg) given above. Now,S; ()| =
dim[V;(t)], using Corollaryl. Hence the right hand side of inequali {5 can be rewrit-
tenasy 7, [dim[V(t)] — dim[V;(t)]], which is the sum of the virtual queue sizes.

Finally, we can find the asymptotic behavior of the physiasup size in steady state
under Algorithm 2 (b). Since the expected virtual queuessihemselves are al) (fp)

from Equation .2), we obtain the stated result.

2.6.5 The coding module

We now present a coding module that is compatible with the-dvben-seen queuing
algorithm in the sense that it always forms a linear combnatising packets that are
currently in the queue maintained by the queuing module.dbiten, we show that the
coding module satisfies the innovation guarantee property.

Let {uy,us,...,u,} be the set of indices of the next unseen packets of the reseive
sorted in ascending order (in general < n, since the next unseen packet may be the same
for some receivers). Exclude receivers whose next unseskefsahave not yet arrived at
the sender. LefRR(u;) be the set of receivers whose next unseen packef, is We now

present the coding module to select the linear combinatiotrédnsmission.
1. Loop over next unseen packets

Forj = 1tom, do:

All receivers inR(u;) have seen packets,, for i < j. Now, Vr € R(u;), find
Ve i= .0 @;W,(py,), WhereW,(p,,) is the witness for receivers seeingp,,.
Pick ; € T, such thata; is different from the coefficient op,, in y, for each
r € R(u;).

2. Compute the transmit packet:g := >~ | a,;py,.
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It is easily seen that this coding module is compatible whth drop-when-seen algo-
rithm. Indeed, it does not use any packet that has been sealhfiegeivers in the linear
combination. It only uses packets that at least one rechi@emot yet seen. The queue
update module retains precisely such packets in the quele.n@xt theorem presents a

useful property of the coding module.

Theorem 8. If the field size is at least, then the coding module picks a linear combination

that will cause any receiver to see its next unseen packet syaressful reception.

Proof. First we show that a suitable choice always existsofpthat satisfies the require-
ment in step 1. For € R(u;), y» = 0. Hence, as long as; # 0, the condition is
satisfied. So, pick; = 1. Since at least one receiver isit{u; ), we have that, foy > 1,
|R(u;)| < (n —1). Even if eachy, for r € R(u;) has a different coefficient fgs,,, that
covers only(n — 1) different field elements. 1§ > n, then there is a choice left i, for
(7F

Now, we have to show that the condition given in step 1 implied the receivers
will be able to see their next unseen packet. Indeed, fo§ &bm 1 tom, and for all
r € R(u;), receiven knowsy,, since it is a linear combination of witnesses-ofHence, if
r successfully receives it can computég —y,.). Now, g andy, have the same coefficient
for all packets with index less thar), and a different coefficient fgs,,,. Hence,(g — y.)
willinvolve p,; and only packets with index beyong. This means can seg,,; and this

completes the proof. n

Theorem5 implies that seeing an unseen packet corresponds to negeini unknown
degree of freedom. Thus, Theor@&massentially says that the innovation guarantee property
is satisfied and hence the scheme is throughput optimal.

This theorem is closely related to the result derived4§] fthat computes the mini-
mum field size needed to guarantee innovation. The differénthat our result uses the
framework of seen packets to make a more general statemespayfying not only that
innovation is guaranteed, but also that packets will be seerder with this deterministic

coding scheme. This means packets will be dropped in ordbeaender.
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2.7 Overhead

In this section, we comment on the overhead required for dtlgms 1 and 2 (b). There

are several types of overhead.

2.7.1 Amount of feedback

Our scheme assumes that every receiver feeds back one evitegftry slot, indicating
whether an erasure occurred or not. In comparison, the wiap-decoded scheme re-
quires feedback only when packets get decoded. Howevdratrcase, the feedback may
be more than one bit — the receiver will have to specify thiedisall packets that were
decoded, since packets may get decoded in groups. In agalaictiplementation of the
drop-when-seen algorithm, TCP-like cumulative acknowteegts can be used to inform

the sender which packets have been seen.

2.7.2 ldentifying the linear combination

Besides transmitting a linear combination of packets, tmelsemust also embed infor-
mation that allows the receiver to identify what linear canalbion has been sent. This
involves specifying which packets have been involved incibrabination, and what coeffi-

cients were used for these packets.

Set of packets involved

The baseline algorithm uses all packets in the queue foirtead combination. The queue
is updated in a first-in-first-out (FIFO) manneée., no packet departs before all earlier
packets have departed. This is a consequence of the fachéhedceiver signals success-
ful decoding only when the virtual queue becomes ermpflhe FIFO rule implies that
specifying the current contents of the queue in terms of tiggnal stream boils down to
specifying the sequence number of the head-of-line pacicttee last packet in the queue

in every transmission.

4As mentioned earlier in Remark we assume that the sender checks whether any packets have be
newly decoded, only when the virtual queue becomes empty.
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The drop-when-seen algorithm does not use all packets frengtieue, but only at
mostn packets from the queue (the next unseen packet of each eecehhis set can be

specified by listing the sequence number of thepackets.

Now, in both cases, the sequence number of the originalrstcaanot be used as it is,
since it grows unboundedly with time. However, we can avbid problem using the fact
that the queue contents are updated in a FIFO manner (THsoisrae of our drop-when-
seen scheme — the coding module guarantees that packetsevaien in order, thereby
implying a FIFO rule for the sender’s queue.). The soluti®ro express the sequence
number relative to an origin that also advances with timefodews. If the sender is
certain that the receiver’s estimate of the sender’'s queuessat a particular point, then

both the sender and receiver can reset their origin to that,@ond then count from there.

For the baseline case, the origin can be reset to the cur@htgédcket, whenever the
receiver sends feedback indicating successful decodirge idea is that if the receiver
decoded in a particular slot, that means it had a successfeption in that slot. Therefore,
the sender can be certain that the receiver must have rddigdatest update about the
gueue contents and is therefore in sync with the sender., Tiisender and receiver can
reset their origin. Note that since the decoding epochs ftérdnt receivers may not be
synchronized, the sender will have to maintain a differeigfio for each receiver and send
a different sequence number to each receiver, relativeatadceiver’s origin. This can be

done simply by concatenating the sequence number for eaelvee in the header.

To determine how many bits are needed to represent the ssgyjm@mber, we need
to find out what range of values it can take. In the baselinerseh the sequence number
range will be proportional to the busy period of the virtuaége, since this determines how
often the origin is reset. Thus, the overhead in bits for @achiver will be proportional to

the logarithm of the expected busy periad, O <log2 fp)

For the drop-when-seen scheme, the origin can be reset wdrethe receiver sends
feedback indicating successful reception. Thus, themagivances a lot more frequently

than in the baseline scheme.
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Coefficients used

The baseline algorithm uses a random linear coding scheraie, idotentially all packets
in the queue get combined in a linear combination. So, in thesixcase, the sender would
have to send one coefficient for every packet in the queuehelfqueue has: packets,

this would requirem log, ¢ bits, whereg is the field size. In expectation, this would be

(1-p)?

sender, then it would be sufficient for the sender to send tihect state of the generator

O ( 082 4 ) bits. If the receiver knows the pseudorandom number gesreuaed by the

and the size of the queue. Using this, the receiver can gendecoefficients used by the
sender in the coding process. The new drop-when-seen thlgotises a coding module
which combines the next unseen packet of each receiver., Theisverhead for the coef-
ficients is at most log, ¢ bits, wheren is the number of receivers. It does not depend on

the load factop at all.

2.7.3 Overhead at sender

While Algorithm 2 (b) saves in buffer space, it requires thedss to store the basis matrix
of each receiver, and update them in every slot based ondekdblowever, storing a row
of the basis matrix requires much less memory than storingcagt, especially for long
packets. Thus, there is an overall saving in memory. Thetepufahe basis matrix simply

involves one step of the Gaussian elimination algorithm.

2.7.4 Overhead at receiver

The receiver will have to store the coded packets till theydecoded. It will also have
to decode the packets. For this, the receiver can performus<gm elimination after
every successful reception. Thus, the computation for thgixinversion associated with

decoding can be spread over time.
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2.8 Conclusions

Comparing Theorem and Theoren®, we see that the queue size for the new Algorithm
2 is significantly lower than Algorithm 1, especially at hgaraffic. If the memory at the
sender is shared among many flows, then this reduction inegsiee will prove useful in
getting statistical multiplexing benefits. Algorithm 2ails the physical queue size to track
the virtual queue size. This extends stability and otheugugetheoretic results on virtual
gueues to physical queues. We believe the proposed schdimgewbbust to delayed
or lossy feedback, just like conventional ARQ. The schemdieaxtends to a tree of
broadcast links with no mergers, if intermediate nodes uieess packets in place of
original packets. With suitable changes, we expect it terkto other topologies as well.
In summary, we propose in this chapter, a natural extendidyR® for coded networks,
and analyze it from a queue management perspective. Thie ifrét step towards the
goal of using feedback on degrees of freedom to control theark performance, by
dynamically adjusting the extent to which packets are mixetthhe network. In the next
chapter, we focus on a different metric, the decoding delslg. study how the encoding

process can be adapted dynamically based on the feedbaakics@nsure low delay.
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Chapter 3

Adaptive online coding to reduce delay

In today’s communication systems, the demand for suppprgal-time applications is
growing rapidly. In popular applications such as live vidgeeaming and video confer-
encing, the user’s experience is very sensitive to the pekgt delay. In pre-recorded
video streamingi(e., not live), a low delay is still preferable because that wiaelduce the
amount of buffering required for playback at the receiver.

Note that this notion of per-packet delay is very differawini download delayd6)].
While downloading a file, usually the main performance cigieris the time it takes to
complete the download. From the system point of view, thed gssentially translates to a
high throughput requirement. The implicit assumption inlsa scenario is that the file is
useful only as a whole.

From a throughput perspective, there are situations whuetieg across packets is very
useful. One reason is that coding can help correct errorseaamslires in the network.
Another reason is, in certain network topologies such adthterfly network from the
network coding literaturell], coding is necessary to share bottleneck links across fliows
order to achieve the system capacity. Similarly, in broatto@ode links, especially with
erasures, coding across packets is critical for achievimglathroughput16].

Now, any form of coding comes with an associated decodinayddlhe receiver has to
wait to collect sufficiently many coded packets before it dasode the original packets.
Therefore, in delay-sensitive applications, it may be ssagy to carefully design the cod-

ing scheme so that it not only satisfies the criteria needeshsoire high throughput, but
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also achieves a low decoding delay.

Motivated by this goal, we explore in our work, the possipibf making use of feed-
back in order to adapt the coding scheme in an online manrefo@us on the single hop
packet erasure broadcast channel with perfect immediatibéek. We propose and study a
new coding module for any number of receivers. We show thaitliroughput optimal and
that it allows efficient queue management. We also study ftiferent notions of delay.
The first one is the decoding delay per packet. This is sintpdyaverage over all pack-
ets of the time between arrival and decoding at an arbitreecgiver. The second notion,
known as delivery delay, is a much stronger notion of defegssumes that packets may be
delivered to the receiver’s application only in the ordetradir arrival at the sender. These
notions were also studied in earlier wo6]. We conjecture that our scheme achieves the
asymptotically optimal expected decoding delay and dsfigelay in the limit of heavy

traffic.

Note that with the coding module of Sectiar6.5in Chapter2, although a receiver can
see the next unseen packet in every successful receptiodoids not mean the packet will
be decoded immediately. In general, the receiver will haveollect enough equations in

the unknown packets before being able to decode them, iregsuita delay.

The rest of the chapter is organized as follows. In Secdidnwe present the system
model and the problem statement. SectiohAthen motivates the problem in the context
of related earlier work. We then study in Secti®r8.1, the delivery delay behavior of
Algorithms 1 and 2(b) of Chaptet, and provide an upper bound on the asymptotic ex-
pected delivery delay for any policy that satisfies the iratimn guarantee property. This
is followed by a generic lower bound on the expected decod#lgy in Sectior3.3.2
Section3.4 presents the new generalized coding module for any numhbeceifvers. The
performance of this algorithm is described in Sectiof In Section3.6, we present our
simulation results. Finally, the conclusions and diracsifor future work are presented in

Section3.7.
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3.1 The system model

The system model is identical to that in Chapger The load factorp is defined to be
:= \/u as before, whera is the rate of the arrival process apds the probability of
successful delivery with respect to a particular receierthis chapter, we again assume
that the sender can only use linear codes. In other wordsy énasmission is a linear
combination of the current contents of the buffer. The codfit vector corresponding to

a linear combination is conveyed to the receiver througtptket header.
Unlike Chapte however, in this chapter we are interested not in the quecigpanicy,

but in the delay performance. We will use two notions of delay

Definition 10 (Decoding Delay) Thedecoding delaypf a packet with respect to a receiver
is the time between the arrival of the packet at the sender @dlécoding of the packet

by the receiver under consideration.

As discussed earlier, some applications can make use okatgady if all prior packets
have been decoded. In other words, the application will@tgoackets only up tthe front

of contiguous knowledgédefined as follows.

Definition 11 (Front of contiguous knowledge)n an application where the sender gen-
erates a stream of packets, tfrent of contiguous knowledgef a receiver is defined to
be the largest packet indéxsuch that the receiver has decoded all packets with index less

than or equal tck.
This motivates the following stronger notion of delay.

Definition 12 (Delivery Delay) Thedelivery delayof a packet with respect to a receiver
is the time between the arrival of the packet at the sender ladelivery of the packet by
the receiver to the application, with the constraint that lpets may be delivereahly in

order.

It is easily seen from these definitions thia¢ delivery delay is, in general, longer than
the decoding delayJpon decoding the packets, the receiver will place thenr@oedering

buffer until they are delivered to the application.
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It is well known that in this model, the queue can be stahilias long ap < 1, by
using linear network codingdlp]. In this work, we are interested in the rate of growth of
the decoding and delivery delay, in the heavy traffic regifne approaching 1. We focus
on the expectation of these delays for an arbitrary packetan be shown using ergodic
theory that the long term average of the delay experiencetthdopackets in steady state
converges to this expectation with high probability.

The problem we study in this chapter is the following: Is then adaptive coding
scheme that is throughput optimal and at the same time ahibe best possible rate of

growth of the decoding and delivery delay, as a functiomh/df — p)?

3.2 Motivation and related earlier work

Coding for per-packet delay has been studied in earlier wgrlhbrtinian et al. [24].
However, that work considered a point-to-point settingkenbur broadcast scenario. The
problem of the delay for recovering packets from a file hasilstedied in the rateless code
framework with or without feedback, by ] and [28]. Reference5] also considered the
problem of coding for delay using feedback. The settingeghein terms of a fixed delay
model for point-to-point communication, where each padiat a deadline by which it
needs to be delivered. A packet which does not meet its deadliconsidered to be in
error, and the corresponding error exponents are chaieder

In contrast, we consider the expected per-packet delay wmeaigg theoretic frame-
work, with no strict deadlines. Besides, our setting is a ptmrmultipoint (broadcast)
packet erasure channel.

For the case of packet erasure broadcast channel with twovees, Durvyet al. [57]
have proposed a feedback-based throughput-optimal cedlmgme that ensures that every
successful innovative reception at any receiver will catise decode an original packet.
This property is callethstantaneous decodabilitidowever, the authors provided an exam-
ple to show that for the three receiver case, instantanesxsddbility cannot be achieved
without losing throughput. In related work, Sadeghial. [58] formulated the instan-

taneous decodability problem as an integer linear prognathpsmoposed algorithms for
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different scenarios.

Keller et al. [59] also studied this problem and proposed and compared $elera
gorithms to reduce the decoding delay. This work did not carghe in-order delivery
problem. Both $7] and [59] consider the transmission of a given finite set of packets. |
contrast, #3] assumes that packets arrive at the source according telsestic process in
a streaming manner and proposes a coding scheme for tweeecel he focus however,
is to ensure stable throughput and not low delay. 44],[the authors propose a greedy
coding scheme for the case of more than 2 receivers, whick @maximize the number
of receivers that can decode a packet instantaneouslye akffense of losing throughput.

Our current work considers stochastic packet arrivals. \&édethe earlier works did
not consider the in-order delivery constraint, we studydélkvery delay as well. We focus
on throughput optimal schemes. Since instantaneouslydaéddy cannot be guaranteed
for more than 2 receivers, we consider the relaxed requineéofeasymptotically optimal
decoding and delivery delay, where the asymptotics aresihéavy traffic limit of the load
factorp — 1.

In Section3.3.2 we present a lower bound on the asymptotic growth of the argde
decoding delay of <1T1p> by arguing that even the single receiver case has this Inagar
of growth in terms of%p. For the two receiver case, it can be proved that the algorith
of [57] indeed achieves this lower bound for decoding delay, aedhseo achieve it for
delivery delay as well, based on simulations.

In Chapter2 (also in [60]), we presented a feedback-based coding scheme for any
number of receivers. The main focus there, however, wasgarerefficient queue man-
agement. The queue size growth was shown t@t(qi—p). However, the decoding delay
of the schemes proposed there, are seen to hguadraticgrowth in1/(1 — p) based on
simulations, as explained in Secti8rB.1below. The section also shows that the delay of
any policy that satisfies the innovation guarantee propepper-bounded by a quadratic
function of 1 /(1 — p).

Reference 1] proposed a coding scheme for the case of three receiveara/éisacon-
jectured to achieve the asymptotic lower bound. Howeverag not generalizable to multi-

ple receivers. Referenc@]] considers the case of heterogeneous channels to theegeseiv
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and proposes a systematic online encoding scheme that seodded packets to enable
frequent decoding at the receivers. However, no charaetesn of the asymptotic behav-
ior of the decoding or delivery delay is provided. For morkated work, the reader is

referred to 2.

The contribution of our current work is to provide a new cadmodule for any num-
ber of receivers, that is at the same time throughput-optiall@ws asymptotically opti-
mal queue sizes and is conjectured to achieve an asympiptgaimal O (ﬁ) growth
for both decoding and delivery delay in the heavy traffic timit can be shown that the
two-receiver algorithm ofg7] is a special case of our algorithm. The delay performance
conjecture is verified through simulations.

Adaptive coding allows the sender’s code to incorporateivecs’ states of knowledge
and thereby enables the sender to control the evolutioneofrtmt of contiguous knowl-
edge. Our scheme may thus be viewed as a step towards feeolissatt control of the

tradeoff between throughput and decoding delay, alongries suggested ir6f).

3.3 Bounds on the delay

3.3.1 An upper bound on delivery delay

We now present the upper bound on delay for policies thatfgatie innovation guarantee

property. The arguments leading to this bound are presdetie.

Theorem 9. The expected delivery delay of a packet for any coding madtiatesatisfies

the innovation guarantee property@(ﬁ).

Proof. For any policy that satisfies the innovation guarantee ptgpthe virtual queue
size evolves according to the Markov chain in FigBrg. The analysis of Algorithm 1 in
Section2.4therefore applies to any coding algorithm that guaranteesvation.

As explained in that section, the event of a virtual queueobr@cg empty translates

to successful decoding at the corresponding receivere shie number of equations now
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matches the number of unknowns involved. Thus, an arbipacgket that arrives at the
sender will get decoded by receivgrat or before the next emptying of th¢" virtual
gueue. In fact, it will get delivered to the application at@fore the next emptying of the
virtual queue. This is because, when the virtual queue iggrapery packet that arrived
at the sender gets decoded. Thus, the front of contiguousl&dge advances to the last
packet that the sender knows.

The above discussion implies that Equati@rB) gives an upper bound on the expected

delivery delay of an arbitrary packet. We thus obtain theltetated above. O

We next study the decoding delay of Algorithm 2 (b). We defhmedecoding evero
be the event that all seen packets get decoded. Since packetbvays seen in order, the
decoding event guarantees that the front of contiguous latme will advance to the front
of seen packets.

We use the ternfeaderto refer to the receiver which has seen the maximum number
of packets at the given point in time. Note that there can beertitan one leader at the
same time. The following lemma characterizes sufficientld@ns for the decoding event

to occur.
Lemma 8. The decoding event occurs in a slot at a particular receivar that slot:

(&) The receiver has a successful reception which resultierapty virtual queue at

the sender; OR

(b) The receiver has a successful reception and the receiger leader at the beginning

of the slot.

Proof. Condition (a) implies that the receiver has seen all packeiishtave arrived at the
sender up to that slot. Each packet at the sender is an unkaodreach seen packet
corresponds to a linearly independent equation. Thus,ebeiver has received as many
equations as the number of unknowns, and can decode alltpackas seen.

Suppose condition (b) holds. Lpt. be the next unseen packet of the receiver in ques-
tion. The sender’s transmitted linear combination willalwe only the next unseen packets

of all the receivers. Since the receiver was a leader at thi@hi@g of the slot, the sender’s
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transmission will not involve any packet beyopd, since the next unseen packet of all
other receivers is eithgs, or some earlier packet. After subtracting the suitablyextal
witnesses of already seen packets from such a linear cotrdnnthe leading receiver will
end up with a linear combination that involves oply. Thus the leader not only seps,
but also decodes it. In fact, none of the sender’s transamsso far would have involved
any packet beyong,. Hence, oncey has been decodegdy_; can also be decoded. This
procedure can be extended to all unseen packets, and bytiomuwe can show that all

unseen packets will be decoded. ]

The upper bound proved in Theoréhis based on the emptying of the virtual queues.
This corresponds only to case (a) in Lem@aThe existence of case (b) shows that in
general, the decoding delay will be strictly smaller thaupper bound. A natural question
is whether this difference is large enough to cause a diftexgymptotic behavior.e., does
Algorithm 2 (b) achieve a delay that asymptotically has alenaxponent of growth than
the upper bound as — 1? We conjecture that this is not the caise, that the decoding
delay for Algorithm 2 (b) is als®? (ﬁ) although the constant of proportionality will
be smaller. For the two receiver case, based on our simo#atthis conjecture seems to
hold. Figure3-1shows the growth of the decoding delay averaged over a langder of
packets, as a function qﬁ—p). The resulting curve seems to be close to the c%,
implying a quadratic growth. The value pfranges from 0.95 to 0.98, whileis fixed to
be 0.5. The figure also shows the upper bound based on busyl peeasurements. This

curve agrees with the formula in Equatich) as expected.

3.3.2 Alower bound on decoding delay
Lemma 9. The expected per-packet decoding delay (sﬁ—p)

Proof. The expected per-packet delay for the single receiver cadearly a lower bound
for the corresponding quantity at one of the receivers in &ipherreceiver system. We
will compute this lower bound in this section. Figute2 shows the Markov chain for the
gueue size in the single receiver casep K= ﬁ < 1, then the chain is positive recurrent

and the steady state expected queue size can be computed#gﬁge: S} (ﬁ) (see

84



Load factor (p)
3000 | | | | | | - | :
94 945 95 955 96 965 97 975 98

- B -Time till next decoding event (Simulation)
- © - Busy period upper bound (Simulation)

2500~ 2 o
T [(1-welu(1-p)] (from Ean. (3))

——0.37/(1-p)°

2000~

1500

Number of time slots

1000~

500~

Figure 3-1: Delay to decoding event and upper bound for 2vecease, as a function of

(1ip). The corresponding values pfare shown on the top of the figure.

Equation 2.1)). Now, if p < 1, then the system is stable and Little’s law can be applied to

show that the expected per-packet delay in the single recsystem is als® (ﬁ) ]

3.4 The coding algorithm

We now present the new coding module for the general caseyofiamber of receivers.
First, we describe the main ideas behind the algorithm. Thenpresent the detailed

specification.

3.4.1 Intuitive description

The intuition behind the algorithm is first to identify for&areceiver, the oldest packet
that it has not yet decoded, which we will call trexjuestof that receiver. The algorithm
then transmits a linear combination that involves packeis fonly within this set.

The linear combination is constructed incrementally. Téeeivers are grouped accord-
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ing to their request, and the groups are processed in desgeoiler of their requested
packet’s index. First, the newest reques.(the one with the largest index) is included in
the linear combination, as otherwise, the correspondingivers, having decoded every-
thing older, will find the transmission non-innovative. Tihéhe algorithm checks whether
the linear combination formed thus far is innovative to guaceiver in the next group.
If it is not innovative, then the coefficient of the next greaupequest is adjusted till it is
simultaneously innovative to the whole group. The key idethat, since the groups are
processed in descending order of their requests, the chmade for the coefficient of sub-
sequent groups’ requests will not affect the innovationasfier groups. This is because,
the earlier groups have already decoded the subsequemsjrequests.

After processing all the groups in this order, the transditinear combination is thus

chosen so that it satisfies the innovation guarantee pgopert

3.4.2 Representing knowledge

Before specifying the algorithm, we first propose a way toespnt systematically the state
of knowledge of the receivers. This is based on the reprasentused in Chaptét, with

a key difference described below.

The k" packet to have arrived at the sender is said to havie@ex k and is denoted
by px. Suppose the total number of packets that have arrived atiraey is denoted by
A(t). Since we have a restriction that the coding must be lineaGam represent the state
of knowledge of a node by a vector space consisting of allitreat combinations that a
node can compute using what it has received thus far. Wegeptéhe state of knowledge
using a basis of this vector space. The basis is represesti aows of a matrix which
is in the row-reduced echelon form (RREF). The matrix Has) columns, one for each
packet that has arrived thus far. While all this is identicelhte representation in Chapter
2, the main difference is in the ordering of the columns of thsi® matrix. We use the
same framework, except that in our current work, the coluamesordered so that packet
px maps to columrA(t) — k. In other words, the columns are arranged in reverse order

with respect to the order of arrival at the sender.
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Throughout this chapter, we shall use the RREF representatibe basis matrix, with
this reverse ordering of the packets. We also make use ofdtiennof seen packets that
was introduced in Chaptér Note however that the definition becomes quite differesfr

that in the previous chapter, if we use the reverse ordemntp® packets.

Definition 13 (Seeing a packet)A node is said to haveeena packet with indeX if and
only if the k" column from the right, of the RREF badisof the knowledge spadé of
the node, is a pivot column. Alternatively, a node has seeaclqipy if it has received
enough information to compute a linear combination of thenfpy. + q), whereq is itself
a linear combination involving only packets with an indess than that ofp. (Decoding

implies seeing, as we can pigk= 0.)

In contrast, the definition used in Chaptehad replaced the word “less” with the
word “greater” in the above statement. We believe the reverdering is better suited to

analyzing the delivery delay. We now make some observatibost the new definition.

Observation 1:As with the forward ordering, the notion of seen with the reeeor-
dering also has connections to the dimension of the knowleggce. In particular, we can
show that every innovative reception causes a new packet seén. In other words, the

number of seen packets is equal to the dimension of the kidgelspace.

Observation 2:0wing to the reverse ordering of the packets, we have anestieg
property. For any: > 0, if all packetsp, to px have been seen, then they have also been

decoded, and hence can be delivered to the application.

A more general definition that accommodates both the fonaacdireverse ordering is
as follows. A packet is considered seen when the receividg neceives a linear combina-
tion including the packet and only subsequent packets, n@gpect to some fixed ordering
on the original packet stream. Thus, a notion of seen exas&viery order that is defined on
the packet stream. For the remaining part of this chaptegha# use the reverse ordering

with respect to the order of arrival.
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3.4.3 Algorithm specification

Now, we present the formal coding algorithm. Let us first defin,, us, ..., u,,} to be
the set of indices of the oldest undecoded packets of. ttezeivers, sorted in descending
order (n < n, since the oldest undecoded packet may be the same for sceieens).
Exclude receivers whose oldest undecoded packet has rentriuetd at the sender. We call
this resulting set of packets thi@nsmit set since the coding module will use only these

packets in computing the linear combination to be trangwahitt

Let R(u;) be the group of receivers whose requegh,js We now present the coding

module to select the linear combination for transmission.

Initialize the transmit coefficient vecterto an all zero vector of lengtfp, the current
sender queue size.
for j =1tom do (Loop over the transmit set
Initialize the veto list to the empty set.
forall r € R(u;) do
Zero out the coefficient of all packets seen by receivétom the current trans-
mission vecto. by subtracting frona, suitably scaled versions of the rows of the
current RREF basis matrix, to get the vector (This is essentially the first step
of Gaussian elimination.) Hence, find out which packet wdlreewly seen if the
linear combination corresponding #ois transmitted. This is simply the index of
the packet corresponding to the first non-zero entry in
if no packet is newly seehen
Append 0 to the veto list
else ifthe newly seen packet’s indexuis then
Append the additive inverse of the leading non-zero entey td the veto list
else ifthe newly seen packet is anything eleen
Do not add anything to the veto list
end if

end for

1This will hold the list of unacceptable coefficientsf; .
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Arrange the elements of the finite field in any order, startiity 0. Choose,,, to be
the first element in this order that is not in the veto list.
end for

Compute the transmit packetg := Zgzl a,Px

3.5 Properties of the algorithm

3.5.1 Throughput

To ensure correctness, the algorithm uses a finite field efatileast as large as the number

of receivers. TheorermO shows that this is a sufficient condition to guarantee intiona

Theorem 10. If the field is at least as large as the number of receiversn tie above
algorithm will always find values for the,’s such that the resulting transmission satisfies

the innovation guarantee property.

Proof. We first show that the choices made by the algorithm guaramtesation. For any
j > 0, consider the/*" request group. Lei(j — 1) be the value of the coefficient vector
just before processing groypNote,a(0) = 0.).

Any receiver in group has not decodeg,,; yet. Hence, it cannot know a linear com-
bination of the forma(j — 1) + ey, for more than one value g, wheree,, is the unit
vector with a 1 in theuﬁ.h coordinate and 0 elsewhere. (If it knew two such combination
it could subtract one from the other to fipd,, a contradiction.)

Suppose the receiver knows exactly one such linear comdmathen, after the row
reduction step, the vectal;j —1) will get transformed inta’ = —3e,,. Hence, the leading
non-zero coefficient o’ is — 3, and its additive inverse gives (Note: the resulting value
of 3 could be 0. This corresponds to the non-innovative casethelfreceiver does not
know any linear combination of this form, then packeis not seen, and nothing is added
to the veto list.

In short, the values that are vetoed are those valugdamfwhich some receiver knows

a linear combination of the form(;j — 1) + gJe,,. Hence, by picking a value of,; from

89



outside this list, we ensure innovation. Thus, the algorigssentially checks for inno-
vation by considering different coefficientsfor including p, into the transmission and
eliminating the ones that do not work. Finally, processmulgsequent groups will not affect
the innovation of the previous groups because the subseqrarps will only change the
coefficient of their requests, which have already been deatbg the previous groups.

We now show that the algorithm always has enough choicesctospich am,; even
after excluding the veto list. As argued above, at any paoithé algorithm, each receiver
adds at most one field element to the veto list. Hence, theligéttan never be longer than
the number of receivers in the corresponding request gidaw, we consider two cases.

Case 1:If the group requesting the highest requestioes not include all the receivers,
then none of the groups contairreceivers. Hence, the veto list for any group will always
be strictly shorter than, and hence if the field size is at leastthere is always a choice
left for a,, .

Case 2:If all n receivers request the highest packgtthen it has to be the case that
they have all decoded every packet beforeHence, the only coefficient that any receiver
would veto forp,, is 0, thus leaving other choices fey, .

This completes the proof. n

3.5.2 Decoding and delivery delay

We conjecture that the coding module described above hasdglay performance.

Conjecture 1. For the coding module in Sectidgh4.3 the expected decoding delay per
packet, as well as the expected delivery delay per packet esgpect to a particular re-

ceiver, grow ag) (ﬁ) asp — 1, which is asymptotically optimal.

The exact analysis of the delay and the proof of this conjectwe open problems.
We believe that the notion of seen packets will be useful im dnalysis. In particular, to
analyze the delivery delay, we can make use of Observaticon2 $ectior3.4.2 A packet
is delivered if and only if this packet and all packets witlhaér index have been seen. This
condition is the same as what arises in problems involvirgsaquencing buffer. Thus, we

can formulate our delivery delay problem in terms of tramtitil queuing problems.
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In our formulation, we break down the delivery delay of a pdor a particular re-
ceiver into two parts, as though the packet has to traversetigues in tandem. The first
part is simply the time till the packet is seen. Once it is sd@mpacket moves into a second
gueue which is essentially a resequencing buffer. The skpart is the time spent in this

buffer waiting for all older packets to be seen.

The expectation of the first part is easy to calculate, siveeyennovative reception
causes a new packet to be seen. By Little’s theorem, the deldiyeictly proportional to
the size of the queue of unseen packets. This queue’s behaagstudied in Chapter
2. Although that work used the older notion of seeing a padkegan be shown that the
analysis still holds even if we use the new notion of seen @adkased on reverse ordering.
Hence, we get & (fp) bound on the first part of the delay. The analysis of the second

part of the delay however, seems more complicated.

3.5.3 Queue management

The coding module described above makes use of only thetalddscoded packet of each
receiver in any given time-slot. Since our definition of spankets uses reverse ordering of
the packets (see Secti@nt.9, the oldest undecoded packet is always an unseen packet. In
other words, the algorithm never uses packets that havedeegrby all the receivers. This
implies thatthe algorithm is compatible with the drop-when-seen queuig algorithm
that was proposed and analyzed in Chaptel, provided we use the new definition of
seen. As pointed out in Observation 1 in Sectid.2 the new definition of seeing a
packet has the same relation to the dimension of the knowlsplgce as the old definition of
Chapter2. Thus, we can recycle all the queue size guarantees thabbtmed in Chapter
2. In other words, we can get a provaﬂe(l%p) growth of the expected queue size at the
sender, in addition to the provable innovation guarantepgaty and the conjectured delay

guarantees.
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3.6 Simulation results

We now evaluate the performance of the newly proposed cadiodule through simula-
tions. In particular, we study the behavior of the decodiatpag and the delivery delay as
a function of the load factop, in the limit asp approaches 1,e., as the loading on the
system approaches capacity.

The probability of reception in any slot js = 0.5. The packets arrive according to a
Bernoulli process, whose arrival rate is calculated acogrth the load factop. The load
factor is varied through the following values: 0.8, 0.9,2).0.94, 0.96, 0.97, 0.98 and 0.99.
The decoding delay and delivery delay are averaged acresmtikets over a large number
of slots. The number of slots is set10° for the first four data points, x 10° for the next
two points, and af x 10° for the last two points.

We consider two different cases. In the first case, therehmee treceivers. The entire
operation is therefore performed ovetd’'(3) (i.e., integer operations modulo 3). In the
second case, we consider the situation where there are treevees. In this case, the
operations are performed over a field of size 5.

Figure 3-2 shows the plot of the decoding and delivery delay as a funcﬂfoli—p for
both the three and the five receiver cases. FiguBshows the same plot in a logarithmic
scale. From both these figures, it is clearly seen that thaittign achieves a linear growth
of the delay in terms o{i—p. We have thus verified Conjectutefor the case of 3 and 5

receivers, using simulations.

3.7 Conclusions

In this chapter, we have thus proposed a new coding modulehwindt only achieves
optimal throughput, but is conjectured to achieve asynaty optimal decoding and
in-order delivery delay as well in the heavy traffic limit. dddition, it also allows efficient
gueue management, leading to asymptotically optimal érpegueue size. The algorithm
applies to the case of any number of receivers. The congcmrow delay is verified

through simulations.
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Figure 3-2: Linear plot of the decoding and delivery delay

Our work introduces a new way of adapting the encoding psobased on feedback so
as to ensure low delay in combination with high throughpatthle future, several exten-
sions are possible. Of particular interest is the study efetffiect of delayed or imperfect
feedback on the code design. We believe that the main idethe afoding algorithm will
extend to the case where we have imperfections in the fekdio&c

Also of interest for the future is the proof of Conjecturerhe delivery delay is closely
related to the problems concerning resequencing buffelg;hahave been studied in a
different context in the literaturesfl], [65] (see also§6] and the references therein). The

techniques used in those works might be useful in studyiisgpitoblem as well.
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Chapter 4

Interfacing network coding with TCP/IP

Network coding has emerged as an important potential appriwathe operation of com-
munication networks, especially wireless networks. Thgmiaenefit of network coding
stems from its ability tonix data, across time and across flows. This makes data transmis-
sion over lossy wireless networks robust and effective. pideghis potential of network
coding, we still seem far from seeing widespread implentemtaf network coding across
networks. We believe a major reason for this is that it is hedichow to naturally add net-
work coding to current network systems (the incrementalaj@pent problem) and how
network coding will behave in a real network in the midst of trarious other protocols
and network dynamics.

In order to bring the ideas of network coding into practice, meed a protocol that
brings out its benefits while requiring very little changehe protocol stack. Flow control
and congestion control in today’s internet are predomigardsed on the Transmission
Control Protocol (TCP), which works using the idea of a slidirapsmission window of
packets, whose size is controlled based on feedback. The &@Eigm has clearly proven
successful. We therefore see a need to find a sliding-winggnoach as similar as possible
to TCP for network coding that makes use of acknowledgmemtfidev and congestion
control. (This problem was initially proposed i63].) Such an approach would necessarily
differ from the generation-based approach more commomigidered for network coding
[34], [36]. In this chapter, we show how to incorporate network codirig TCP, allowing

its use with minimal changes to the protocol stack, and irhsauevay that incremental
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deployment is possible.

The main idea behind TCP is to use acknowledgments of newBived packets as
they arrivein correct sequence orden order to guarantee reliable transport and also as a
feedback signal for the congestion control loGhp [This mechanism requires some mod-
ification for systems using network coding. The key differeno be dealt with is that,
under network coding, the receiver does not obtain orignaakets of the message, but
linear combinations of the packets that are then decodedbtrothe original message
once enough such combinations have arrived. Hence, themotian ordered sequence
of packets as used by TCP is missing, and further, a linear c@tbn may bring in new
information to a receiver even though it may not reveal agioal packet immediately.
The current ACK mechanism does not allow the receiver to agladyge a packet before it
has been decoded. For network coding, we need a modificdtibe standard TCP mech-
anism that acknowledges every unit of information receivAdnew unit of information
corresponds mathematically talagree of freedonessentially, once degrees of freedom
have been obtained, a message that would have requuredoded packets can be decoded.
We present a mechanism that performs the functions of TCRelyaediable transport and
congestion control, based on acknowledging every degrée@dom received, whether or
not it reveals a new packet. In fact, whereas TCP is an endd@eotocol, the proposed
interface with network coding allows us to go beyond this emx@&ncode data inside the
network for better erasure-correction, while still prassmnthe same TCP interface to the

application layer above.

Our solution introduces a new network coding layer betwéenttansport layer and
the network layer of the protocol stack. Thus, we recyclectbregestion control principle
of TCP, namely that the number of packets involved in transioms cannot exceed the
number of acknowledgments received by more than the cangesindow size. However,
we introduce two main changes. First, whenever the sour@éoised to transmit, it sends
a random linear combination of all packets in the congestimalow. Second, the receiver
acknowledges degrees of freedom and not original packélss {dea was previously in-
troduced in Chaptet in the context of a single hop erasure broadcast link.) Am@mmate

interpretation of the degree of freedom allows us to orderé#teiver degrees of freedom
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in a manner consistent with the packet order of the sources allows us to use the stan-
dard TCP protocol with minimal change. We use the TCP-Vegas@ob[67] in the initial
description, as it is more compatible with our modificatioHswever, in the next chapter,
we shall demonstrate that our protocol is also compatibtl e more commonly used
TCP-Reno.

4.1 Implications for wireless networking

In considering the potential benefits of our TCP-compatil@evork coding solution, we
focus on the area of wireless links. We now explain the ingpiens of this new protocol
for improving throughput in wireless networks.

TCP was originally developed for wired networks and was desigto interpret each
packet loss as a congestion signal. Since wired networks ey little packet loss on
the links and the predominant source of loss is buffer owertlae to congestion, TCP’s
approach works well. In contrast, wireless networks argadtarized by packet loss on
the link and intermittent connectivity due to fading. It iglknown that TCP is not well
suited for such lossy links. The primary reason is that itrglg assumes the cause of
link losses to be congestion, and reduces its transmisaterunnecessarily, leading to low
throughput.

Adapting TCP for wireless scenarios is a very well-studiexbfgm (see§8] and refer-
ences therein for a survey). The general approach has besgstolosses from TCP using
link layer retransmissiorgP]. However, it has been noted in the literaturé(]| [ 71]) that
the interaction between link layer retransmission and T@&llansmission can be com-
plicated and that performance may suffer due to indepen@gr@nsmission protocols at
different layers.

More importantly, if we want to exploit the broadcast nataféhe wireless medium,
conventional link layer retransmission may not be the bgst@ach. For example, suppose
a node with two neighbors transmits two packets A and B ang@A is heard by only
the first neighbor and B only by the second neighbor. Them #gvaugh each neighbor has

lost one packet, no retransmission may be necessary if titeydpportunistically forward
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the packets that they received, towards the final destimaiwen if, for some reason, we
want both neighbors to receive both packets, a coded trgsgmj namely A XOR B is
more efficient than repeating either A or B, as it would sirmatausly convey the missing

packet to both neighbors.

There has been a growing interest in approaches that maike ase of the intrinsic
broadcast nature of the wireless medium. In the techniqoekras opportunistic rout-
ing [72], a node broadcasts its packet, and if any of its neighbasives the packet, that
node will forward the packet downstream, thereby obtair@ndjversity benefit. In73],
the authors study the case of unicast traffic in a wirelessueeanetwork with feedback,
and present a capacity achieving flooding-based policy nitltoding. Their algorithm
requires each node to transmit a packet chosen randomlyifsobuffer. A node would
drop a packet from its buffer upon hearing an ACK from the nemxeiThe feedback is thus
not link-by-link, but of the form that every node throughdhé network is immediately
informed of a successful reception at the receiver. Moredfies scheme could generate
multiple copies of each packet. An alternate approach tsfth@re than one of the neigh-
bors receive the packet, they would coordinate and decidewyhforward the packet. A
backpressure-based solution to this problem was proposp@l. However, in general,

such coordination could require a lot of overhead.

The MORE protocol36] proposed the use of intra-flow network coding in combirnatio
with opportunistic routing. The random linear mixing (cog)) of incoming packets at a
node before forwarding them downstream was shown to redhgcedordination overhead
associated with opportunistic routing. Another advantaggat the coding operation can
be easily tuned to add redundancy to the packet stream toat@rdsures, even with lim-
ited feedback. Besides, such schemes can potentially @ctagpacity, even for a multicast

connection 12].

One issue with these approaches however, is that typicdémemtations use batches
of packets instead of sliding windows, and are generallyefioee not compatible with
TCP. EXOR uses batching to reduce the coordination overloeséhs mentioned in7p],
this interacts badly with TCP’s window mechanism. MORE usdshiag to perform the

coding operation. In this case, the receiver cannot ackedhyd the packets until an entire
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batch has arrived and has been successfully decoded. Suiepdrformance heavily relies
on the timely return of ACKs, such a delay in the ACKs would dfftae round-trip time

calculation and thereby reduce the throughput.

Another issue with opportunistic routing is that it coula@deto reordering of packets.
Schemes such a3, [72] or [74] that are based on forwarding of packets opportunis-
tically, may not be able to deliver the packets in their orédiorder at the sender. Such
reordering is known to interact badly with TCP, as it can caligdicate ACKs, and TCP

interprets duplicate ACKs as a sign of congestion.

Our work addresses both these issues — batching and rewydériproposes a TCP-
compatible sliding window network coding scheme in comborawith a new acknowl-
edgment mechanism for running TCP over a network coded sysfgma sender would
transmit a random linear combination of packets in the TCRjestion window. The new
type of ACK allows the receiver to acknowledge every lineanbmation (degree of free-
dom) that is linearly independent from the previously reedilinear combinations. The
receiver does not have to wait to decode a packet, but careseG& ACK for every degree
of freedom received, thus eliminating the problems of usiagchwise ACKs.

It is shown later (Lemma0) that if the linear combination happens over a large enough
finite field, then every incoming random linear combinatioifi, wvith high probability,
generate a TCP ACK for the very next unacknowledged packetdarpamong the ones
involved in the linear combination. This is because the oamdombinations do not have
any inherent ordering. The argument holds true even whetipteupaths deliver the ran-
dom linear combinations. Hence the use of random lineancpdith the acknowledgment
of degrees of freedom can potentiatlgdress the TCP reordering problem for multipath

opportunistic routing schemes

Our scheme does not rely on the link layer for recoveringdesdnstead, we use an
erasure correction scheme based on random linear codess graokets. Coding across
packets is a natural way to handle losses. A coding basedagpiis better suited for
broadcast-mode opportunistic routing scenarios, as ralydohosen linear combinations
of packets are more likely to convey new information, corepap retransmissions. Refer-

ence [L8 proposed a scheme where intermediate nodes in the netwwekrto buffers and
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the resulting packet drops are compensated for by randaarlicoding at the sender. In
contrast, our work uses random linear coding only to corasges that occur on the link
due to channel errors. We do not aim to mask buffer overflowdsssince these losses

may be needed for TCP to measure the level of congestion.

The tradeoff between using coding and using retransmiss@aoorrect errors has been
studied at the physical layer from a theoretical point ofwhey [75]. A similar question
arises at the TCP layer as well. In fact, the question is fuitbenplicated by the fact that
error recovery using retransmission is directly linkedhvttte congestion control mecha-
nism of TCP. We need sulfficient coding to mask network layesdegrom TCP, but at the
same time, we need to allow the buffer overflow losses to bevered by the retransmis-

sion mechanism so that congestion may be correctly detedied it happens.

In summary, by providing an interface between TCP and a n&tamded system, we
present a new approach to implementing TCP over wirelessonkeswand it is here where

the benefits of our solution are most dramatic.

It is important to note that our scheme respects the endwdgakilosophy of TCP — it
would work even if coding operations are performed only aténd hosts. Having said
that, if some nodes inside the network also perform netwoding, our solution naturally
generalizes to such scenarios as well. The queuing analySextiord.5.2considers such

a situation.

The rest of the chapter explains the details of our new pobtong with its theoretical
basis, and analyzes its performance using simulations hsagvan idealized theoretical

analysis.

4.2 The new protocol

In this section, we present the logical description of owy peotocol, followed by a way to

implement these ideas with as little disturbance as passithe existing protocol stack.
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4.2.1 Logical description

The main aim of our algorithm is to mask losses from TCP usimgloan linear coding.
We make some important modifications in order to incorpocaiging. First, instead of
the original packets, we transmit random linear combimetiof packets in the congestion
window. While such coding helps with erasure correctionlsib deads to a problem in ac-
knowledging data. TCP operates with units of packets, whaste la well-defined ordering.
Thus, the packet sequence number can be used for acknomgeitigi received data. The
unit in our protocol is a degree of freedom. However, wherkptecare coded together,
there is no clear ordering of the degrees of freedom that earsbd for ACKs. Our main
contribution is the solution to this problem. The notion eén packets defines an ordering
of the degrees of freedom that is consistent with the pad@gience numbers, and can

therefore be used to acknowledge degrees of freedom.

Upon receiving a linear combination, the sink finds out wipelecket, if any, has been
newly seen because of the new arrival and acknowledgesdbkép The sink thus pretends
to have received the packet even if it cannot be decoded yetwMWshow in Sectiort.3
that in the end this is not a problem because if all the pachetdile have been seen, then

they can all be decoded as well.

The idea of transmitting random linear combinations andhaakedging seen packets
achieves our goal of masking losses from TCP as follows. Widrge field size, every
random linear combination is very likely to cause the nexda@m packet to be seen (see
Lemmal0). So, even if a transmitted linear combination is lost, teetrsuccessful recep-
tion will cause the next unseen packet to be seen. From TCRsp@e&tive, this appears
as though the degree of freedom waits in a fictitious queuéthetchannel stops erasing
packets and allows it through. Thus, there will never be arplidate ACKs. Every ACK
will cause the congestion window to advance. In shbg,lossiness of the link is presented
to TCP as an additional queuing delay that leads to a largegaive round-trip timeThe
term round-trip time thus has a new interpretation. It isdfiective time the network takes
to deliverreliably a degree of freedom (including the delay for the coded redncy] if

necessary), followed by the return of the ACK. This is lardemt the true network delay
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Figure 4-1: Example of coding and ACKs

needed for a lossless transmission and the return of the AG&.nfore lossy the link is,
the larger will be the effective RTT. Presenting TCP with géarvalue for RTT may seem
counterintuitive as TCP’s rate is inversely related to RTowdver, if done correctly, it
improves the rate by preventing loss-induced window clpsas it gives the network more
time to deliver the data in spite of losses, before TCP timds dierefore, losses are

effectively masked.

Consider the example shown in Figurel. Suppose the congestion window’s length is
4. Assume TCP sends 4 packets to the network coding layeedi. All 4 transmissions
are linear combinations of these 4 packets. Tfi¢ransmission causes th& packet to be
seen. The"? and3"? transmissions are lost, and té transmission causes the! packet
to be seen (the discrepancy is because of losses). As fax BRI thestimation is concerned,
transmissions 2, 3 and 4 are treated as attempts to conveéy#idegree of freedom. The
RTT for the 2"¢ packet must include the final attempt that successfullyeedithe2"?
degree of freedom, namely tHé& transmission. In other words, the RTT is the time from

t = 0 until the time of reception of ACK=3.
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Figure 4-2: New network coding layer in the protocol stack

4.2.2 Implementation

The implementation of all these ideas in the existing protatack needs to be done in
as non-intrusive a manner as possible. We present a solwhah embeds the network
coding operations in a separate layer below TCP and above tReaspurce and receiver

side, as shown in Figure-2. The exact operation of these modules is described next.

The sender module accepts packets from the TCP source amugbilfém into an en-
coding buffer which represents the coding windpuntil they are ACKed by the receiver.
The sender then generates and sends random linear corobsati the packets in the
coding window. The coefficients used in the linear comboratire also conveyed in the
header.

For every packet that arrives from TCR,linear combinations are sent to the IP layer
on average, wherg is the redundancy parameter. The average rate at which toezbi-
nations are sent into the network is thus a constant factoe than the rate at which TCP’s

congestion window progresses. This is necessary in ordasrtgpensate for the loss rate

Whenever a new packet enters the TCP congestion window, Ta@Bmits it to the network coding
module, which then adds it to the coding window. Thus, theirmpdvindow is related to the TCP layer’s
congestion window but generally not identical to it. Formeyde, the coding window will still hold packets
that were transmitted earlier by TCP, but are no longer incthregestion window because of a reduction
of the window size by TCP. However, this is not a problem bseauavolving more packets in the linear
combination will only increase its chances of being inniveat
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of the channel and to match TCP’s sending rate to the rate atwdaita is actually sent to
the receiver. If there is too little redundancy, then theadate reaching the receiver will
not match the sending rate because of the losses. This lzadsttuation where the losses
are not effectively masked from the TCP layer. Hence, thexdraguent timeouts leading
to a low throughput. On the other extreme, too much redundenalso bad, since then
the transmission rate becomes limited by the rate of the tedl. Besides, sending too
many linear combinations can congest the network. The idsal of redundancy is to
keepR equal to the reciprocal of the probability of successfuepmon. Thus, in practice
the value ofR should be dynamically adjusted by estimating the loss pissibly using
the RTT estimates.

Upon receiving a linear combination, the receiver modug fetrieves the coding coef-
ficients from the header and appends it to the basis matris &howledge space. Then, it
performs a Gaussian elimination to find out which packet iglyjseen so that this packet
can be ACKed. The receiver module also maintains a buffernefali combinations of
packets that have not been decoded yet. Upon decoding tketpathe receiver module
delivers them to the TCP sink.

The algorithm is specified below using pseudo-code. Thisipation assumes a one-

way TCP flow.

Source side

The source side algorithm has to respond to two types of svettte arrival of a packet

from the source TCP, and the arrival of an ACK from the receivaiR.
1. SetNUM to 0.
2. Wait state:If any of the following events occurs, respond as followsgelvait.
3. Packet arrives from TCP sender:

(a) If the packet is a control packet used for connection meameent, deliver it to

the IP layer and return to wait state.

(b) If packet is not already in the coding window, add it to tioeling window.
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(c) SetNUM = NUM+R. (R=redundancy factor)

(d) Repeat the following NU M | times:
i) Generate a random linear combination of the packets icdiaéng window.

i) Add the network coding header specifying the set of p&cke the coding

window and the coefficients used for the random linear coathmn.

iii) Deliver the packet to the IP layer.
(e) SetNUM := fractional part ofNU M.
() Return to the wait state.

4. ACK arrives from receiverRemove the ACKed packet from the coding buffer and

hand over the ACK to the TCP sender.

Receiver side

On the receiver side, the algorithm again has to respondddypes of events: the arrival

of a packet from the source, and the arrival of ACKs from the TOR.s

1. Wait state: If any of the following events occurs, respond as followsgelvait.

2. ACK arrives from TCP sinklf the ACK is a control packet for connection manage-

ment, deliver it to the IP layer and return to the wait stakee @ggnore the ACK.
3. Packet arrives from source side:

(a) Remove the network coding header and retrieve the codicigpn

(b) Add the coding vector as a new row to the existing codingffaent matrix,

and perform Gaussian elimination to update the set of seekefsa

(c) Add the payload to the decoding buffer. Perform the ojp@ma corresponding
to the Gaussian elimination, on the buffer contents. If aagket gets decoded

in the process, deliver it to the TCP sink and remove it frombihiger.

(d) Generate a new TCP ACK with sequence number equal to th&eobltest

unseen packet.
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4.3 Soundness of the protocol

We argue that our protocol guarantees reliable transferfofmation. In other words, ev-
ery packet in the packet stream generated by the applicatithe source will be delivered
eventually to the application at the sink. We observe thatitknowledgment mechanism
ensures that the coding module at the sender does not remuaekat from the coding
window unless it has been ACKeik., unless it has been seen by the sink. Thus, we only
need to argue that if all packets in a file have been seen, tiecfile¢ can be decoded at the

sink.

Theorem 11. From a file ofn. packets, if every packet has been seen, then every packet can

also be decoded.

Proof. If the sender knows a file af packets, then the sender’s knowledge space is of
dimensiomn. Every seen packet corresponds to a new dimension. Heralénipackets
have been seen, then the receiver’'s knowledge space isfalsnensionn, in which case

it must be the same as the sender’s and all packets can beedecod n

In other words, seeing different packets corresponds to havininearly independent
equations inn unknowns. Hence, the unknowns can be found by solving theersyef
equations. At this point, the file can be delivered to the TGR.sIn practice, one does
not have to necessarily wait until the end of the file to deatipackets. Some of the un-
knowns can be found even along the way. In particular, whemtie number of equations
received catches up with the number of unknowns involves utiknowns can be found.
Now, for every new equation received, the receiver sends@. Ahe congestion control
algorithm uses the ACKs to control the injection of new unknewnto the coding window.
Thus, the discrepancy between the number of equations anderof unknowns does not
tend to grow with time, and therefore will hit zero often béwes the channel conditions.
As a consequence, the decoding buffer will tend to be stable.

An interesting observation is that the arguments used tw ghe soundness of our
approach are quite general and can be extended to more beremnarios such as random

linear coding based multicast over arbitrary topologies.
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Figure 4-3: Simulation topology
4.4 Fairness of the protocol

Here, we study the fairness property of our algorithm throsighulations.

4.4.1 Simulation setup

The protocol described above is simulated using the Net@arlulator (ns-2) T6]. The
topology for the simulations is a tandem network consisbhg hops (hence 5 nodes),
shown in Figure4-3. The source and sink nodes are at opposite ends of the cham. T
FTP applications want to communicate from the source to ithie sThere is no limit on
the file size. They emit packets continuously till the endhaf simulation. They either use
TCP without coding or TCP with network coding (denoted TCP/N@)thiis simulation,
intermediate nodes do not re-encode packets. All the liak® la bandwidth of 1 Mbps,
and a propagation delay of 100s The buffer size on the links is set at 200. The TCP
receive window size is set at 100 packets, and the packeissiZ@00 bytes. The Vegas

parameters are chosen tode- 28, 3 = 30,y = 2 (see p7] for details of Vegas).

4.4.2 Fairness and compatibility — simulation results

By fairness, we mean that if two similar flows compete for thesé#ink, they must receive
an approximately equal share of the link bandwidth. In adljtthis must not depend on
the order in which the flows join the network. The fairness GPFVegas is a well-studied
problem. It is known that depending on the values chosenhentand 5 parameters,

TCP-Vegas could be unfair to an existing connection when a c@wection enters the
bottleneck link (7], [78]). Several solutions have been presented to this probletmein

literature (for example, se& 9| and references therein). In our simulations, we first pick
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Figure 4-4: Fairness and compatibility - one TCP/NC and one fl@®

values ofa and that allow fair sharing of bandwidth when two TCP flows withouir
modification compete with each other, in order to evaluagesffect of our modification on

fairness. With the same and, we consider two cases:

Case 1:The situation where a network coded TCP flow competes withhandtow

running TCP without coding.
Case 2:The situation where two coded TCP flows compete with each.other

In both cases, the loss rate is set to 0% and the redundarametar is set to 1 for a
fair comparison. In the first case, the TCP flow starts first-at).5s and the TCP/NC flow
starts atl000s. The system is simulated for 2080 The current throughput is calculated
at intervals o2.5s. The evolution of the throughput over time is shown in Figt4 The
figure shows that the effect of introducing the coding layeeginot affect fairness. We see

that, after the second flow starts, the bandwidth gets rdalistd fairly.

For case 2, the experiment is repeated with the same startieg, but this time both
flows are TCP/NC flows. The plot for this case is essentiallytidal to Figure4-4 (and
hence is not shown here) because in the absence of losseNT®Bhaves identically to
TCP if we ignore the effects of field size. Thus, coding can iexth TCP in the absence

of losses, without affecting fairness.
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4.5 Effectiveness of the protocol

We now show that the new protocol indeed achieves a high ¢imout, especially in the
presence of losses. We first describe simulation resultgpadny the protocol’s perfor-
mance with that of TCP in Sectigh5.1 Next, in Sectiont.5.2 we study the effectiveness
of the random linear coding ideas in a theoretical model vwdé&alized assumptions such
as infinite buffer space, and known channel capacity. We ghatyin such a scenario, our

scheme stabilizes the queues for all rates below capacity.

4.5.1 Throughput of the new protocol — simulation results

The simulation setup is identical to that used in the fasrsasiulations (see Sectidn4.J).

We first study the effect of the redundancy parameter on tioeitiinput of TCP/NC for
a fixed loss rate of 5%. By loss rate, we mean the probability pécket getting lost on
each link. Both packets in the forward direction as well as A@Kthe reverse direction
are subject to these losses. No re-encoding is allowed attérenediate nodes. Hence, the
overall probability of packet loss across 4 hops is givert by(1 —0.05)* which is roughly
19%. Hence the capacity is roughly 0.81 Mbps, which when &glly gives 0.405 Mbps
per flow. The simulation time i$0000s.

We allow two TCP/NC flows to compete on this network, both stgrat0.5s. Their
redundancy parameter is varied between 1 and 1.5. The tlwdigeoptimum value is
approximatelyl /(1 — 0.19) ~ 1.23. Figure4-5 shows the plot of the throughput for the
two flows, as a function of the redundancy paraméterit is clear from the plot thaf?
plays an important role in TCP/NC. We can see that the througieaks around® = 1.25.
The peak throughput achieved is 0.397 Mbps, which is indeesedo the capacity that we
calculated above. In the same situation, when two TCP flowsgpetarfor the network, the
two flows see a throughput of 0.0062 and 0.0072 Mbps resgégtiVhus, with the correct
choice ofR, the throughput for the flows in the TCP/NC case is very highgamad to the
TCP case. In fact, even witR = 1, TCP/NC achieves about 0.011 Mbps for each flow
improving on TCP by almost a factor of 2.

Next, we study the variation of throughput with loss ratetioth TCP and TCP/NC.
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Figure 4-5: Throughput vs redundancy for TCP/NC

The simulation parameters are all the same as above. Theakesef all links is kept at
the same value, and this is varied from 0 to 20%. We comparestsnarios — two TCP
flows competing with each other, and two TCP/NC flows compeiiit each other. For
the TCP/NC case, we set the redundancy parameter at the optualue corresponding
to each loss rate. Figure6 shows that TCP’s throughput falls rapidly as losses increase
However, TCP/NC is very robust to losses and reaches a thpotitirat is close to capacity.

pis the loss rate on each link, then capacitylis- p)*, which must then be split equally.
(If pisthel hlink, th itylis- p)*, which hen be spli Ily.)

Figure4-7 shows the instantaneous throughput in a 642 second londationuof a
tandem network with 3 hops.€., 4 nodes), where erasure probabilities vary with time in
some specified manner. The third hop is, on average, the masstre-prone link. The plots
are shown for traditional TCP, TCP/NC with coding only at tharse, and TCP/NC with
re-encoding at node 3 (just before the worst link). The ajpmnaof the re-encoding node
is very similar to that of the source — it collects incomingglar combinations in a buffer,
and transmits, on averagk;,; random linear combinations of the buffer contents for every
incoming packet. Thé? of the sender is set at 1.8, and tRg,; of node 3 is set at 1.5 for
the case when it re-encodes. The average throughput is shdivatable. A considerable
improvement is seen due to the coding, that is further erdshbg allowing intermediate
node re-encoding. This plot thus shows that our scheme dssailded to systems with

coding inside the network.
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Throughput vs Loss Rate
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Remark 3. These simulations are meant to be a preliminary study of tggorghm’s per-
formance. Specifically, the following points must be noted:

— Link layer retransmission is not considered for either TGA@P/NC. If allowed, this
could improve the performance of TCP. However, as mentiongigeghe retransmission
approach does not extend to more general multipath routoigt®ns, whereas coding is

better suited to such scenarios.

— The throughput values do not account for the overhead &ssolcwith the network cod-
ing headers. The main overhead is in conveying the codinfjicieats and the contents of
the coding window. If the source and sink share a pseudorandonber generator, then
the coding coefficients can be conveyed succinctly by sgtickncurrent state of the gen-
erator. Similarly, the coding window contents can be condegean incremental manner
to reduce the overhead.

— The loss in throughput due to the finiteness of the field hav@en modeled in the
simulations. A small field might cause received linear corations to be non-innovative,
or might cause packets to be seen out of order, resulting plicate ACKs. However,
the probability that such problems persist for a long timisfaapidly with the field size.
We believe that for practical choices of field size, thesaeisswill only cause transient
effects that will not have a significant impact on performantleese effects remain to be
quantified exactly.

— Finally, the decoding delay associated with the network mpdiperation has not been
studied. We intend to focus on this aspect in experimentseifuture. A thorough experi-
mental evaluation of all these aspects of the algorithm, amge general topology, is part

of ongoing work.

45.2 Theideal case

In this section, we focus on an idealized scenario in ord@réovide a first order analysis
of our new protocol. We aim to explain the key ideas of our @rot with emphasis on the
interaction between the coding operation and the feedb@wkmodel used in this section

will also serve as a platform which we can build on to incogtemore practical situations.
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Figure 4-8: Topology: Daisy chain with perfect end-to-eaddback

We abstract out the congestion control aspect of the proligrassuming that the
capacity of the system is fixed in time and known at the sowaed,hence the arrival rate
is always maintained below the capacity. We also assumetitis have infinite capacity
buffers to store packets. We focus on a topology that canefsa chain of erasure-prone
links in tandem, with perfect end-to-end feedback from thé& directly to the source. In

such a system, we investigate the behavior of the queueaiz@sious nodes.

System model

The network we study in this section is a daisy chaimohodes, each node being con-
nected to the next one by a packet erasure channel. We asssloited time system. The
source generates packets according to a Bernoulli processeof packets per slot. The
point of transmission is at the very beginning of a slot. &isdr this point, every node
transmits one random linear combination of the packetsigutue. The relation between
the transmitted linear combination and the original pasketam is conveyed in the packet
header. We ignore this overhead for the analysis in this@ectVe ignore propagation
delay. Thus, the transmission, if not erased by the chaneathes the next node in the
chain almost immediately. However, the node may use theynegkived packet only in
the next slot’s transmission. We assume perfect, delayfredback from the sink to the
source. In every slot, the sink generates the feedback|safpea the instant of reception
of the previous node’s transmission. The erasure eventemsppith a probabilityf 1 — ;)

on the channel connecting nodend (i + 1), and is assumed to be independent across
different channels and over time. Thus, the system has aitgpain; 1; packets per slot.

We assume that < min; u;, and define the load factpr = A/ ;.

113



Queue update mechanism

Each node transmits a random linear combination of the ntio@ntents of its queue and
hence, it is important to specify how the queue contents pdated at the different nodes.
Queue updates at the source are relatively simple becaeseryslot, the sink is assumed
to send an ACK directly to the source, containing the indekefdldest packet not yet seen
by the sink. Upon receiving the ACK, the source simply droppatkets from its queue
with an index lower than the sink’s request.

Whenever an intermediate node receives an innovative pabtiketauses the node to
see a previously unseen packet. The node performs a Gae#isi@mation to compute the
witness of the newly seen packet, and adds this to the queles, Thtermediate nodes
store the witnesses of the packets that they have seen. @aédhind the packet drop rule
is similar to that at the source — an intermediate node may tth®witnesses of packets up
to but excluding what it believes to be the sink’s first unsegcket, based on its knowledge
of the sink’s status at that point of time.

However, the intermediate nodes, in general, may only knoawddated version of the
sink’s status because we assume that the intermediate dodsst have direct feedback
from the sink (see Figuré-8). Instead, the source has to inform them about the sink’s
ACK through the same erasure channel used for the regulaafdrivansmission. This
feed-forward of the sink’s status is modeled as follows. \Wwenthe channel entering an
intermediate node is in the ON state( no erasure), the node’s version of the sink’s status
is updated to that of the previous node. In practice, thecgoneed not transmit the sink’s
status explicitly. The intermediate nodes can infer it fribv@ set of packets that have been
involved in the linear combination — if a packet is no longemlved, that means the source

must have dropped it, implying that the sink must have ACKedréady.

Remark 4. This model and the following analysis also works for the casenwitg all

intermediate nodes are involved in the network coding. Ifesaode simply forwards the
incoming packets, then we can incorporate this in the follgwiray. An erasure event on
either the link entering this node or the link leaving thigleawill cause a packet erasure.

Hence, these two links can be replaced by a single link whod®apiity of being ON is
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simply the product of the ON probabilities of the two linksnigeieplaced. Thus, all non-
coding nodes can be removed from the model, which brings ustbabe same situation

as in the above model.

Queuing analysis

We now analyze the size of the queues at the nodes under thénguymlicy described
above. The following theorem shows that if we allow codingnérmediate nodes, then
it is possible to achieve the capacity of the network, nameily; 1. In addition, it also
shows that the expected queue size in the heavy-traffic (dmi ming ;) has an asymp-
totically optimal linear scaling in/(1 — py).

Note that, if we only allow forwarding at some of the interriz#d nodes, then we
can still achieve the capacity of a new network derived byapsing the links across the

non-coding nodes, as described in Remark

Theorem 12. As long as\ < py forall 0 < k& < N, the queues at all the nodes will be
stable. The expected queue size in steady state atin@de & < N) is given by:

-1

E[Qx] =

pi(l— ) =
20 T

An implication: Consider a case where all thgs are equal to some. Then, the above
relation implies that in the limit of heavy traffice., p — 1, the queues are expected to be
longer at nodes near the source than near the sink.

A useful lemmaThe above theorem will be proved after the following lemmde T
lemma shows that the random linear coding scheme has thempydipat every time there is
a successful reception at a node, the node sees the nexhyaszet with high probability,
provided the field is large enough. This fact will prove us$efhile analyzing the evolution

of the queues.

Lemma 10. LetS, andSy be the set of packets seen by two nodes A and B respectively. As-
sumeS,4\ Sp is non-empty. Suppose A sends a random linear combinatibé witnesses

of packets it 4 and B receives it successfully. The probability that traméimission causes
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B to see the oldest packet§fy\ Sp is <1 - é) whereg is the field size.

Proof. Let M4 be the RREF basis matrix for A. Then, the coefficient vector eflthear
combination sent by A i$ = uM 4, whereu is a vector of lengthS4| whose entries are
independent and uniformly distributed over the finite figld Let ¢* denote the index of
the oldest packet if4\Sp.

Let My be the RREF basis matrix for B before the new reception. Suppassuc-
cessfully received by B. Then, B will appemnds a new row ta\/z and perform Gaussian
elimination. The first step involves subtracting frapsuitably scaled versions of the pivot
rows such that all entries afcorresponding to pivot columns df/z become 0. We need
to find the probability that after this step, the leading rzemne entry occurs in columa,
which corresponds to the event that B sees pagketSubsequent steps in the Gaussian
elimination will not affect this event. Hence, we focus og fhist step.

Let Pg denote the set of indices of pivot columns/di;. In the first step, the entry in

columnd* of t becomes

(d) =t(d)— Y ti)- Mp(ra(i),d")
1€ Pp,i<d*

whererg(7) is the index of the pivot row corresponding to pivot columim M. Now,
due to the way RREF is definet|d*) = u(ra(d*)), wherer,(i) denotes the index of the
pivot row corresponding to pivot columinin M 4. Thus,t(d*) is uniformly distributed.
Also, fori < d*, t(i) is a function of only those(;)'s such thaty < r,(d*). Hencet(d*)
is independent of(:) for i < d*. From these observations and the above expression for
t'(d*), it follows that for any given/, and Mg, t'(d*) has a uniform distribution ovef,,

and the probability that it is not zero is therefare — %) n

Computing the expected queue sizefFor the queuing analysis, we assume that a
successful reception always causes the receiver to seextanseen packet, as long as
the transmitter has already seen it. The above lemma argaethis assumption becomes
increasingly valid as the field size increases. In realiyns packets may be seen out of

order, resulting in larger queue sizes. However, we beliegtthis effect is minor and can

116



be neglected for a first order analysis.

With this assumption in place, the queue update policy destrearlier implies that
the size of the physical queue at each node is simply therdifte between the number of

packets the node has seen and the number of packets it Isalevsink has seen.

To study the queue size, we define a virtual queue at each hatlkdeps track of the
degrees of freedom backlog between that node and the next dhe chain. The arrival
and departure of the virtual queues are defined as followsadket is said to arrive at a
node’s virtual queue when the node sees the packet for thdifms. A packet is said to
depart from the virtual queue when the next node in the chees the packet for the first
time. A consequence of the assumption stated above is thatethof packets seen by a
node is always a contiguous set. This allows us to view theialiqueue maintained by
a node as though it were a first-in-first-out (FIFO) queue. Jike of the virtual queue is
simply the difference between the number of packets seehéopdde and the number of

packets seen by the next node downstream

We are now ready to prove Theoreld. For each intermediate node, we study the
expected time spent by an arbitrary packet in the physicalguat that node, as this is

related to the expected physical queue size at the node ttbg/'s law.

Proof of Theoreni2: Consider the:* node, forl < k < N. The time a packet spends

in this node’s queue has two parts:
1) Time until the packet is seen by the sink:

The virtual queue at a node essentially behaves like a FIE€n /Geom /1 queue. The
Markov chain governing its evolution is identical to thatloé virtual queues studied i6()
and in Chapte® of this thesis (see Figu2-2). Given that nodé: has just seen the packet
in question, the additional time it takes for the next nodede that packet corresponds
to the waiting time in the virtual queue at noéle For a load factor op and a channel

ON probability of ., the expected waiting time can be derived using Little’otkeen and

Equation2.2to be ,E(lf_“p))- Now, the expected time until the sink sees the packet istthe s
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of (N — k) such terms, which gives

N-1
(1_/%

Py N1<1 - Pz

2) Time until sink’s ACK reaches intermediate node:

The ACK informs the source that the sink has seen the packe.iffformation needs
to reach nodé by the feed-forward mechanism. The expected time for tliggmation to
move from node to node: + 1 is the expected time until the next slot when the channel
is ON, which is justi (since thei" channel is ON with probability;;). Thus, the time it

takes for the sink’s ACK to reach nodses given by

The total expected timé), a packet spends in the queue at ktfenode ( < k& < N)
can thus be computed by adding the above two terms. Now, asguhe system is stable
(i.e, A < min; j;), we can use Little’s law to derive the expected queue sitteedt” node,

by multiplying 7}, by A:

4.6 Conclusions

In this chapter, we have proposed a new approach to congestidrol on lossy links based
on the idea of random linear network coding. We have intreduc new acknowledgment
mechanism that plays a key role in incorporating coding theacontrol algorithm. From
an implementation perspective, we have introduced a newanlktcoding layer between
the transport and network layers on both the source andvexcgdes. Thus, our changes
can be easily deployed in an existing system.

A salient feature of our proposal is that it is simultanegusimpatible with the case

where only end hosts perform coding (thereby preservingetigeto-end philosophy of
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TCP), as well as the case where intermediate nodes perfomoretoding. Theory sug-
gests that a lot can be gained by allowing intermediate ntmlesde as well. Our scheme
naturally generalizes to such situations. Our simulatgh®wy that the proposed changes
lead to large throughput gains over TCP in lossy links, eveh wading only at the source.
For instance, in a 4-hop tandem network with a 5% loss rateach &nk, the through-
put goes up from about 0.007 Mbps to about 0.39 Mbps for theecbredundancy factor.
Intermediate node coding further increases the gains.

This chapter presents a new framework for combining codiitly f@edback-based rate-
control mechanisms in a practical way. It is of interest ttead this approach to more
general settings such as network coding based multicastaogeneral network. Even in
the point-to-point case, these ideas can be used to impteanenltipath-TCP based on
network coding.

In the next chapter, we shall discuss some of the practisaésthat arise in designing
an implementation of the TCP/NC protocol compatible withl fFEGP/IP stacks. These
issues were not considered in the idealized setting disdusp to this point. We shall

explain how to implement a network-coding layer that pregid clean interface with TCP.
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Chapter 5

Experimental evaluation

We now present a real-life network coding implementatioselobon the theoretical foun-

dation presented in Chaptér The main contributions of this chapter are as follows:

1. We explain how to address the practical problems thae amisnaking the network
coding and decoding operations compatible with TCP’s windaanagement sys-
tem, such as variable packet length, buffer managementneinebrk coding over-

head.

2. We demonstrate the compatibility of our protocol with thielely used TCP Reno;
the proposal of Chapterconsidered only TCP Vegas.

3. We present experimental results on the throughput beradfihe new protocol for
a TCP connection over a single-hop wireless link. Althougtrently our experi-
ments only study behavior over a single hop, this restmdgaot mandatory and the

evaluation of the protocol over arbitrary topologies wil &ddressed elsewhere.

The rest of this chapter is organized as follows. Sectiorisand 5.2 describe the
sender side and receiver side modules, respectively, aildénh section5.3, we discuss
the parameters defined in the algorithm and how they affegbénformance. Sectidn3.5
discusses the interface presented by the coding layer todrCie sender as well as the
receiver side. Sectiob.4 presents the results obtained from the experiment.

In summary, we discuss the various measures needed in thed agstem in order to

ensure that the theoretical ideas of Chaptean be implemented without violating the
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primary requirement, which is, the correctness of the mata/Ne show that it is possible
to implement a TCP-aware network-coding layer that has thpepty of a clean interface
with TCP.

5.1 Sender side module

The operation of the coding element at the sender is mordviedtdhan the sender side
operations described in Chapter Several complications arise, that need to be addressed
before ensuring that the theoretical ideas carry over tor¢laé system. We shall now

describe these issues and the corresponding fixes.

5.1.1 Forming the coding buffer

The description of the protocol in Chaptéassumes a fixed packet length, which allows
all coding and decoding operations to be performed symlstwn the whole packet.
That is, in Chaptert an entire packet serves as the basic unit of di¢g @s a single
unknown), with the implicit understanding that the exachsaperation is being performed
on every symbol within the packet. The main advantage ofviei is that the decoding
matrix operationsi(e., Gaussian elimination) can be performed at the granulafipackets
instead of individual symbols. Also, the ACKs are then ablbéaepresented in terms of
packet numbers. Finally, the coding vectors then have oa#icient for every packet, not
every symbol. Note that the same protocol and analysis of €hagolds even if we fix
the basic unit of data as a symbol instead of a packet. Thdgmmois that the complexity
will be very high as the size of the coding matrix will be reldto the number of symbols
in the coding buffer, which is much more than the number okpte(typically, a symbol
is one byte long).

In actual practice, TCP is a byte-stream oriented protocalhith ACKs are in terms
of byte sequence numbers. If all packets are of fixed lengehcam still apply the packet-
level approach, since we have a clear and consistent mapéepacket sequence numbers
and byte sequence numbers. In reality, however, TCP migl@rgesegments of different

sizes. The choice of how many bytes to group into a segmergually made based on
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the Maximum Transmission Unit (MTU) of the network, whichubd vary with time. A
more common occurrence is that applications may use the Rld§ldption asking TCP to
packetize the currently outstanding bytes into a segmeaen it does not form a segment
of the maximum allowed size. In short, it is important to eesthat our protocol works
correctly in spite of variable packet sizes.

A closely related problem is that of repacketization. Rep#ehtion, as described in
Chapter 21 of T], refers to the situation where a set of bytes that were asdigo two
different segments earlier by TCP may later be reassignetdetsame segment during
retransmission. As a result, the grouping of bytes into ptecknder TCP may not be fixed
over time.

Both variable packet lengths and repacketization need tddeased when implement-
ing the coding protocol. To solve the first problem, if we hpeekets of different lengths,
we could elongate the shorter packets by appending sutfigierany dummy zero sym-
bols until all packets have the same length. This will workrectly as long as the receiver
is somehow informed how many zeros were appended to eacketpatkile transmitting
these extra dummy symbols will decrease the throughpugrgéwn this loss will not be
significant, as packet lengths are usually consistent.

However, if we have repacketization, then we have anoth&slem, namely it is no
longer possible to view a packet as a single unknown. Thigtabise we would not have
a one-to-one mapping between packets sequence numbergtarsgtquence numbers; the
same bytes may now occur in more than one packet. Repaciatizgtpears to destroy
the convenience of performing coding and decoding at thkgidevel.

To counter these problems, we propose the following salutibhe coding operation
described in Chapterinvolves the sender storing the packets generated by the 0@Pes
in a coding buffer We pre-process any incoming TCP segment before adding heto t

coding buffer as follows:

1. First, any part of the incoming segment that is alreadhénluffer is removed from

the segment.

2. Next, a separate TCP packet is created out of each remaairiguous part of the
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Figure 5-1: The coding buffer
segment.

3. The source and destination port information is removedilll be added later in the

network coding header.

4. The packets are appended with sufficiently many dummy lzgties, to make them

as long as the longest packet currently in the buffer.

Every resulting packet is then added to the buffer. This@ssing ensures that the packets
in the buffer will correspond to disjoint and contiguoussset bytes from the byte stream,
thereby restoring the one-to-one correspondence betwegracket numbers and the byte
sequence numbers. The reason the port information is ex@lindm the coding is because
port information is necessary for the receiver to identifiyielh TCP connection a coded
packet corresponds to. Hence, the port information shoodde involved in the coding.
We refer to the remaining part of the header as the TCP subheade

Upon decoding the packet, the receiver can find out how mateskare real and how
many are dummy using th&tart; and End; header fields in the network coding header
(described below). With these fixes in place, we are readgedhe packet-level algorithm
of Chapter4. All operations are performed on the packets in the codirftebuFigure
5.1.1shows a typical state of the buffer after this pre-procegsirhe gaps at the end of
the packets correspond to the appended zeros. It is impaootamote that, as suggested in
Chapter4, the TCP control packets such as SYN packet and reset packatiawed to

bypass the coding buffer and are directly delivered to theiver without any coding.
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Figure 5-2: The network coding header

5.1.2 The coding header

A coded packet is created by forming a random linear comioinatf a subset of the pack-
ets in the coding buffer. The coding operations are done @&alois field of size 256 in
our implementation. Thus, one symbol corresponds to one yhich is a natural choice
for breaking up a packet into symbols. The header of a codekipahould contain infor-
mation that the receiver can use to identify what is the limeanbination corresponding to
the packet. We now discuss the header structure in mord.detai
We assume that the network coding header has the structomensh Figure5-2. The

typical sizes (in bytes) of the various fields are written\abthem. The meaning of the

various fields are described next:

e Source and destination porT:he port information is needed for the receiver to iden-
tify the coded packet’s session. It must not be included encibding operation. Itis

taken out of the TCP header and included in the network cocdaglér.

e Base: The TCP byte sequence number of the first byte that has not bE€&ed
The field is used by intermediate nodes or the decoder to el@dmch packets can

be safely dropped from their buffers without affectingabliity.
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n: The number of packets involved in the linear combination.

Start;: The starting byte of thé”" packet involved in the linear combination.

End;: The last byte of thé'* packet involved in the linear combination.

a;: The coefficient used for th&" packet involved in the linear combination.

The Start; (exceptStart,) and End; are expressed relative to the previous packet's
End and Start respectively, to save header space. As shown in the figusehé#ader
format will add5n + 7 bytes of overhead for the network coding header in additainée
TCP header, where is the number of packets involved in a linear combinatioroté\that
the port information is not counted in this overhead, sindeas been removed from the
TCP header.) We believe it is possible to reduce this overbgddrther optimizing the

header structure.

5.1.3 The coding window

In the theoretical version of the algorithm, the sendergnaits a random linear combina-
tion of all packets in the coding buffer. However, as notedvab the size of the header
scales with the number of packets involved in the linear doation. Therefore, mixing
all packets currently in the buffer will lead to a very largeling header.

To solve this problem, we propose mixing only a constargssigubset of the packets
chosen from within the coding buffer. We call this subsetabding window The coding
window evolves as follows. The algorithm uses a fixed paranfet the maximum coding
window sizelV. The coding window contains the packet that arrived mostntyg from
TCP (which could be a retransmission), and e — 1) packets before it in sequence
number, if possible. However, if some of tfié” — 1) preceding packets have already been
dropped, then the window is allowed to extend beyond the mexsintly arrived packet
until it includesW packets.

Note that this limit on the coding window implies that the ead now restricted in its
power to correct erasures and to combat reordering-relssees. The choice ot/ will

thus play an important role in the performance of the sch@rhe.correct value forl” will
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depend on the length of burst errors that the channel is égbéa produce. Other factors
to be considered while choosiig/ are discussed in Sectidn3. In our experiment, we

fixed W based on trial and error.

5.1.4 Buffer management

A packet is removed from the coding buffer if a TCP ACK has adivequesting a byte
beyond the last byte of that packet. If a new TCP segment avwwen the coding buffer is
full, then the segment with the newest set of bytes must gpedrd. This may not always be
the newly arrived segment, for instance, in the case of a T€&@mission of a previously

dropped segment.

5.2 Receiver side module

The decoder module’s operations are outlined below. Ther maia structure involved
is the decoding matrix, which stores the coefficient vectumsesponding to the linear

combinations currently in the decoding buffer.

5.2.1 Acknowledgment

The receiver side module stores the incoming linear contioiman the decoding buffer.

Then it unwraps the coding header and appends the new ceeffi@ctor to the decoding
matrix. Gaussian elimination is performed and the packeétopped if it is not innovative

(i.e. if it is not linearly independent of previously recet/linear combinations). After
Gaussian elimination, the oldest unseen packet is idethtifitestead of acknowledging the
packet number as in Chaptérthe decoder acknowledges the last seen packetguesting

the byte sequence number of the first byte of the first unsesketpasing a regular TCP
ACK. Note that this could happen before the packet is decodéddlelivered to the receiver
TCP. The port and IP address information for sending this ACK beobtained from the
SYN packet at the beginning of the connection. Any ACKs geteelray the receiver TCP

are not sent to the sender. They are instead used to updatectsiee window field that
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is used in the TCP ACKSs generated by the decoder (see subsbetmm). They are also

used to keep track of which bytes have been delivered, féebafanagement.

5.2.2 Decoding and delivery

The Gaussian elimination operations are performed not onlyhe decoding coefficient
matrix, but correspondingly also on the coded packets thkm@s. WWhen a new packet is
decoded, any dummy zero symbols that were added by the anampruned using the
coding header information. A new TCP packet is created wighnewly decoded data and

the appropriate TCP header fields and this is then deliverdetoeceiver TCP.

5.2.3 Buffer management

The decoding buffer needs to store packets that have noegetdecoded and delivered to
the TCP receiver. Delivery can be confirmed using the rec@i@®’'s ACKs. In addition,
the buffer also needs to store those packets that have béegrele but have not yet been
dropped by the encoder from the coding buffer. This is bezagisch packets may still be
involved in incoming linear combinations. Theuse field in the coding header addresses
this issue. Base is the oldest byte in the coding buffer. Therefore, the dec@an drop
a packet if its last byte is smaller thafuse, and in addition, has been delivered to and
ACKed by the receiver TCP. Whenever a new linear combinatiovess;rthe value oBase
is updated from the header, and any packets that can be dreppéropped.

The buffer management can be understood using 5ig. It shows the receiver side
windows in a typical situation. In this casBase is less than the last delivered byte. Hence,
some delivered packets have not yet been dropped. Ther@ alsol be a case whefuse

is beyond the last delivered byte, possibly because notiasgeen decoded in a while.

5.2.4 Modifying the receive window

The TCP receive window header field is used by the receiverftwrmthe sender how
many bytes it can accept. Since the receiver TCP’s ACKs arerespgd, the decoder

must copy this information in the ACKs that it sends to the sendHowever, to ensure
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Figure 5-3: Receiver side window management

correctness, we may have to modify the value of the TCP reseindow based on the
decoding buffer size. The last acceptable byte should teukdminimum of the receiver
TCP’s last acceptable byte and the last byte that the decdulifigr can accommodate.
Note that while calculating the space left in the decodinfjdouwe can include the space
occupied by data that has already been delivered to thevezdmcause such data will get
dropped whemBase is updated. If window scaling option is used by TCP, this ndgeds
be noted from the SYN packet, so that the modified value of ¢kseive window can be
correctly reported. Ideally, we would like to choose a laegeugh decoding buffer size so
that the decoding buffer would not be the bottleneck andrtiudification would never be

needed.

5.3 Discussion of the practicalities

5.3.1 Redundancy factor

The choice of redundancy factor is based on the effectiveeposbability on the links. For

a loss rate op., with an infinite window W and using TCP Vegas, the theorelyagptimal
value of Ris 1/(1 — p.), as shown in Chapter. The basic idea is that of the coded packets
that are sent into the network, only a fraction— p.) of them are delivered on average.
Hence, the value oRR must be chosen so that in spite of these losses, the recgiabta

to collect linear equations at the same rate as the rate ahvthe unknown packets are
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mixed in them by the encoder. As discussed below, in pradteevalue ofR may depend

on the coding window siz&l’. As IV decreases, the erasure correction capability of the
code goes down. Hence, we may need a lafjgos compensate and ensure that the losses
are still masked from TCP. Another factor that affects thei@hof R is the use of TCP
Reno. The TCP Reno mechanism causes the transmission ratettatéuaround the link
capacity, and this leads to some additional losses overlamgbdhe link losses. Therefore,

the optimal choice o may be higher thai/(1 — p.).

5.3.2 Coding Window Size

There are several considerations to keep in mind while ¢hgd#’, the coding window
size The main idea behind coding is to mask the losses on #mehfrom TCP. In other
words, we wish to correct losses without relying on the ACKs.n&ider a case where
W is just 1. Then, this is a simple repetition code. Every packeepeated? times on
average. Now, such a repetition would be useful only forvedag one packet, if it was
lost. Instead, ifit” was say 3, then every linear combination would be useful tover
any of the three packets involved. Ideally, the linear corabons generated should be able
to correct the loss of any of the packets that have not yet B&¥ed. For this, we need
W to be large. This may be difficult, since a lafigéwould lead to a large coding header.
Another penalty of choosing a large valudfis related to the interaction with TCP Reno.

This is discussed in the next subsection.

The penalty of keeping)/ small on the other hand, is that it reduces the error cooecti
capability of the code. For a loss probability of 10%, theotietical value ofR is around
1.1. However, this assumes that all linear combinationsisedul to correct any packet’s
loss. The restriction oM’ means that a coded packet can be used only for recovering
thoselW packets that have been mixed to form that coded packet. bicpiar, if there
is a contiguous burst of losses that result in a situationrgevbige receiver has received no
linear combination involving a particular original packieten that packet will show up as a
loss to TCP. This could happen even if the valuéia$ chosen according to the theoretical

value. To compensate, we may have to choose a ldtger
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The connection betwediy, R and the losses that are visible to TCP can be visualized
as follows. Imagine a process in which whenever the recedagives an innovative linear
combination, one imaginary token is generated, and whenlegesender slides the coding
window forward by one packet, one token is used up. If theseslities the coding window
forward when there are no tokens left, then this leads to &gqtdass that will be visible
to TCP. The reason is, when this happens, the decoder willenable to see the very next
unseen packet in order. Instead, it will skip one packeténsiiiquence. This will make the
decoder generate duplicate ACKs requesting that lostnsgen) packet, thereby causing

the sender to notice the loss.

In this process|V corresponds to the initial number of tokens available atstraler.
Thus, when the difference between the number of redundarikes (linear equations)
received and the number of original packets (unknowns)weebin the coding up to that
point is less tharil/, the losses will be masked from TCP. However, if this diffeen
exceeddV, the losses will no longer be masked. A theoretically opkivatue of 1V is not
known. However, we expect that the value should be a funatfdhe loss probability of

the link. For the experiment, we chose value$iobased on trial and error.

5.3.3 Working with TCP Reno

By adding enough redundancy, the coding operation esdgrt@iverts the lossiness of
the channel into an extension of the round-trip time (RTHisTs why Chapte# proposed
the use of the idea with TCP Vegas, since TCP Vegas controlsotigestion window in

a smoother manner using RTT, compared to the more abrupb&sesd variations of TCP
Reno. However, the coding mechanism is also compatible witR Reno. The choice
of W plays an important role in ensuring this compatibility. Tdteice ofI} controls
the power of the underlying code, and hence determines wiese$ are visible to TCP.
As explained above, losses will be masked from TCP as longeasumber of received
equations is no more thai short of the number of unknowns involved in them. For
compatibility with Reno, we need to make sure that whenevwes#mnding rate exceeds the

link capacity, the resulting queue drops are visible to TCPsses. A very large value of
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W is likely to mask even these congestion losses, therebydrarily giving TCP a false
estimate of capacity. This will eventually lead to a timeauntd will affect throughput. The
value of W should therefore be large enough to mask the link lossesraatl snough to

allow TCP to see the queue drops due to congestion.

5.3.4 Computational overhead

It is important to implement the encoding and decoding djmra efficiently, since any
time spent in these operations will affect the round-tnipetiperceived by TCP. The finite
field operations ovef7F'(256) have been optimized using the approach &f][ which
proposes the use of logarithms to multiply elements. @¥E¥256), each symbol is one
byte long. Addition inGF'(256) can be implemented easily as a bitwise XOR of the two
bytes.

The main computational overhead on the encoder side is theafmn of the random
linear combinations of the buffered packets. The manageofahe buffer also requires
some computation, but this is small compared to the randosaticoding, since the coding
has to be done on every byte of the packets. Typically, padiate a lengtii. of around
1500 bytes. For every linear combination that is createzl¢tiding operation involvesilV/
multiplications and.(WW —1) additions ovel7 F'(256), wherelV is the coding window size.
Note that this has to be doretimes on average for every packet generated by TCP. Since

the coded packets are newly created, allocating memorjén tcould also take time.

On the decoder side, the main operation is the Gaussiannaliimn. Note that, to
identify whether an incoming linear combination is innawator not, we need to perform
Gaussian elimination only on the decoding matrix, and nothencoded packet. If it is
innovative, then we perform the row transformation operatiof Gaussian elimination on
the coded packet as well. This requi@sL1V') multiplications and additions to zero out
the pivot columns in the newly added row. The complexity & tiext step of zeroing out
the newly formed pivot column in the existing rows of the ddiog matrix varies depending
on the current size and structure of the matrix. Upon degpdinew packet, it needs to

be packaged as a TCP packet and delivered to the receivee Bisaequires allocating
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space for a new packet, this could also be expensive in tefrtme

As we will see in the next section, the benefits brought by thswee correction begin
to outweigh the overhead of the computation and coding hefaddoss rates of about
3%. This could be improved further by more efficient impletagion of the encoding and

decoding operations.

5.3.5 Interface with TCP

An important point to note is that the introduction of the nestwork coding layer does not
require any change in the basic features of TCP. As describeekathe network coding
layer accepts TCP packets from the sender TCP and in retuneetiegular TCP ACKs
back to the sender TCP. On the receiver side, the decodeeetmgular TCP packets to
the receiver TCP and accepts regular TCP ACKs. Therefore,andlte TCP sender nor
the TCP receiver sees any difference looking downwards iptbcol stack. The main
change introduced by the protocol is that the TCP packets fin@esender are transformed
by the encoder by the network coding process. This transfbom is removed by the de-
coder, making it invisible to the TCP receiver. On the retuathpthe TCP receiver's ACKs
are suppressed, and instead the decoder generates reGiakdKs that are delivered to
the sender. This interface allows the possibility that legliCP sender and receiver end
hosts can communicate through a wireless network even yf @éine located beyond the

wireless hosts.

While the basic features of the TCP protocol see no changer, spieeial features of
TCP that make use of the ACKs in ways other than to report theraguired byte sequence
number, will need to be handled carefully. For instance |@menting the timestamp op-
tion in the presence of network coding across packets mayireegome thought. With
TCP/NC, the receiver may send an ACK for a packet even beforel@asded. Thus, the
receiver may not have access to the timestamp of the paclest ivbends the ACK. Simi-
larly, the TCP checksum field has to be dealt with carefullpc8ia TCP packet is ACKed
even before it is decoded, its checksum cannot be testedeb&@King. One solution is

to implement a separate checksum at the network coding tayfatect errors. In the same
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way, the various other TCP options that are available have implemented with care to

ensure that they are not affected by the premature ACKs.

5.4 Results

We test the protocol on a TCP flow running over a single-hoplasselink. The transmit-
ter and receiver are Linux machines equipped with a wireddessnna. The experiment is
performed over 802.11a with a bit-rate of 6 Mbps and a maxirfiglink layer retrans-
mission attempts. RTS-CTS is disabled.

Our implementation uses the Click modular routet]] The Click code extracts the
IP packets transmitted by the source TCP module usindsthewclTun element. These
packets are then processed by an element that encapshiatestwork coding layer at the
sender. In order to control the parameters of the setup, eehaspredefined elements of
Click. Since the two machines are physically close to eacérpthere are very few losses
on the wireless link. Instead, we artificially induce padksses using th&andomSample
element. Note that these packet losses are introducedelte®mwireless link. Hence, they
will not be recovered by the link layer retransmissions, aade to be corrected by the
layer above IP. The round-trip delay is empirically obsdrieebe in the range of a few tens
of milliseconds. The encoder and decoder queue sizes aie 580 packets, and the size
of the bottleneck queue just in front of the wireless linkast® 5 packets. In our setup, the
loss inducing element is placed before the bottleneck queue

The quantity measured during the experiment is the goodputao20 second long TCP
session. The goodput is measured uspg f [82]. Each point in the plots shown is aver-
aged over 4 or more iterations of such sessions, dependitigeavariability. Occasionally,
when the iteration does not terminate and the connectiosstiont, the corresponding iter-
ation is neglected in the average, for both TCP and TCP/NC. Tdppdns around 2 % of
the time, and is observed to be because of an unusually laisg dfuosses in the forward
or return path. In the comparison, neither TCP nor TCP/NC uskestyve ACKs. TCP
uses delayed ACKs. However, we have not implemented delaga&tAn TCP/NC at this

point.
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Fig. 5-5shows the variation of the goodput with the redundancy faftdor a loss
rate of 10%, with a fixed coding window size Wf = 3. The theoretically optimal value
of R for this loss rate is 1.11 (=1/0.9) (see ChapterHowever, from the experiment, we
find that the best goodput is achieved forfaof around 1.25. The discrepancy is possibly
because of the type of coding scheme employed. Our codirgreetiransmits a linear
combination of only thé?” most recent arrivals, in order to save packet header sphce. T
restriction reduces the strength of the code for the samee\&lR. In general, the value
of R andW must be carefully chosen to get the best benefit of the codmegation. As
mentioned earlier, nother reason for the discrepancy doeikthe use of TCP Reno.

Fig. 5-6 plots the variation of goodput with the size of the coding daw sizelV.
The loss rate for this plot is 5%, with the redundancy factaediat 1.06. We see that the
best coding window size is 2. Note that a coding window siz8/0f= 1 corresponds to a
repetition code that simply transmits every packet 1.0@$ron average. In comparison,
a simple sliding window code withl” = 2 brings a big gain in throughput by making the
added redundancy more useful. However, going beyond 2 esdhe goodput because a
large value o’ can mislead TCP into believing that the capacity is largen theeally is,
which leads to timeouts. We find that the best valuélofor our setup is usually 2 for a
loss rate up to around 5 %, and is 3 for higher loss rates up%a Eesides the loss rate,
the value ofl¥ could also depend on other factors such as the round-trgpairthe path.

Fig. 5-4 shows the goodput as a function of the packet loss rate. EEbrless rate, the
values ofR andW have been chosen by trial and error, to be the one that massntie
goodput. We see that in the lossless case, TCP performs tette CP/NC. This could
be because of the computational overhead that is introdioigede coding and decoding
operations, and also the coding header overhead. Howevdredoss rate increases, the
benefits of coding begin to outweigh the overhead. The gaoofplUCP/NC is therefore
higher than TCP. Coding allows losses to be masked from TCP,amzklthe fall in good-
put is more gradual with coding than without. The perforngaoan be improved further

by improving the efficiency of the computation.
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Chapter 6

Conclusions and future work

In today’s world, wireless communication networks are beitg increasingly important.
Their relative ease of deployment and convenience for tldeuser have been primarily
responsible for the rapid growth of wireless communicatitrat we have seen and con-
tinue to see today. Hence, understanding the fundament#s Iof communication over
the wireless medium, and designing effective protocolsdparoach these limits, are the
main goals of many communication engineers today.

In the applications side, the end-users are increasingilyadding multimedia data,
usually with the added requirement of low delay, due to tlad-tiene nature of the com-
munication. Moreover, the demand for multicast traffic moabn the rise. These demands
place some difficult requirements on the network infragtries and we need some new
approaches to meet these demands.

Network coding provides a fundamentally new way to operatevarks, by generaliz-
ing the routing operation at nodes to one involving codingsg packets. The literature
in the field of network coding has shown that the traditionalyvwef operating networks,
namely using store-and-forward (routing) strategiespidoest-suited for meeting such re-
guirements over lossy environments such as wireless. ddsthe option of intermediate
nodes in the network being able to code across packets agss@dmension to the solution
space, and more often than not, brings with it a benefit in$esfreither an improvement
in the efficiency, or a reduction in the complexity of the ieplentation, or both.

In order to realize these theoretical promises in practmedver, it is important to
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address the interfacing problem — when incorporating a reshinological idea into an
existing infrastructure, it is crucial to ensure that theaids compatible with current proto-
cols. In this thesis, we have addressed this question frenpoimt of view of interfacing

acknowledgment-based protocols and the network codingaopas.

The thesis is an effort to understand how to make use of feédbahe form of ac-
knowledgments, in the context of a network that employs ngtwoding. We have studied
three different uses of feedback — efficient queue managereding for low decoding
delay, and finally the congestion control problem. In eacktheke three cases, we have
provided a theoretical framework to analyze the problemyel$ as designed algorithms
that, we believe, are simple enough to be easily deployedirtipe to improve the network
performance.

The notion ofseeing a packetntroduced in Chaptet, is the central idea of the thesis,
and it leads to a completely online feedback-based netwaitiag scheme, which is readily
compatible with the widely used sliding-window congestommtrol protocol, namely TCP.
Based on this idea, we propose new queue management stsategfiean be used in any
scenario with coding across packets. The notion of seergpgckgeneralized in Chapter
3, where we study feedback-based adaptation of the codg its@rder to optimize the

performance from a delay perspective.

We believe that there are several extensions to the proldamdged in this thesis. The
notion of seen packets also plays a crucial role in mappiagl#lay and queue manage-
ment problems in network coded systems, to traditional lerab from queuing theory.
Moreover, it gives rise to several new and interesting quegeproblems that are well mo-
tivated from the network coding framework. A striking exdms the decoding delay
problem, discussed in Chaptgrand its relation to the resequencing buffer problem from
the queuing literature. We believe the techniques develtpstudy resequencing buffers
will prove useful in studying the delay performance of vasaschemes in the network

coding framework.

Another extension that is possible using the framework ld@esl in this thesis is
the development of a TCP-like protocol for multicast sessi@ven if we have multiple

senders. From the network coding theory, it is known thatpitresence of multiple re-
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ceivers does not significantly complicate the problem, ag ks all of them have identical
demands. We believe that this understanding can be comhiitieé suitably defined no-
tion of seen packets, to develop an acknowledgment-basedcot for multiple-sender
multicast sessions with intra-session coding.

To summarize, we believe that the work done in this thesissiep towards realizing
the benefits of network coding in a practical setting, by éngla simple implementation

that is compatible with the existing infrastructure.
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