206 research outputs found

    Feature Representation for Online Signature Verification

    Full text link
    Biometrics systems have been used in a wide range of applications and have improved people authentication. Signature verification is one of the most common biometric methods with techniques that employ various specifications of a signature. Recently, deep learning has achieved great success in many fields, such as image, sounds and text processing. In this paper, deep learning method has been used for feature extraction and feature selection.Comment: 10 pages, 10 figures, Submitted to IEEE Transactions on Information Forensics and Securit

    On the Discrimination Power of Dynamic Features for Online Signature

    Get PDF
    The mobile market has taken huge leap in the last two decades, re-defining the rules of communication, networking, socializing and transactions among individuals and organizations. Authentication based on verification of signature on mobile devices, is slowly gaining popularity. Most online signature verification algorithms focus on computing the global Equal Error Rate across all users for a dataset. In this work, contrary to such a representation, it is shown that there are user-specific differences on the combined features and user-specific differences on each feature of the Equal Error Rate(EER) values. The experiments to test the hypothesis is carried out on the two publicly available dataset using the dynamic time warping algorithm. From the experiments, it is observed that for the MCYT-100 dataset, which yields an overall EER of 0.08, the range of user-specific EER is between 0 and 0.27

    Feature selection in a low cost signature recognition system based on normalized signatures and fractional distances

    Get PDF
    Producción CientíficaIn a previous work a new proposal for an efficient on-line signature recognition system with very low computational load and storage requirements was presented. This proposal is based on the use of size normalized signatures, which allows for similarity estimation, usually based on DTW or HMMs, to be performed by an easy distance calcultaion between vectors, which is computed using fractional distance. Here, a method to select representative features from the normalized signatures is presented. Only the most stable features in the training set are used for distance estimation. This supposes a larger reduction in system requirements, while the system performance is increased. The verification task has been carried out. The results achieved are about 30% and 20% better with skilled and random forgeries, respectively, than those achieved with a DTW-based system, with storage requirements between 15 and 142 times lesser and a processing speed between 274 and 926 times greater. The security of the system is also enhanced as only the representative features need to be stored, it being impossible to recover the original signature from these.Junta de Castilla y Leon (project VA077A08

    SPEECH RECOGNITION FOR CONNECTED WORD USING CEPSTRAL AND DYNAMIC TIME WARPING ALGORITHMS

    Get PDF
    Speech Recognition or Speech Recognizer (SR) has become an important tool for people with physical disabilities when handling Home Automation (HA) appliances. This technology is expected to improve the daily life of the elderly and the disabled so that they are always in control over their lives, and continue to live independently, to learn and stay involved in social life. The goal of the research is to solve the constraints of current Malay SR that is still in its infancy stage where there is limited research in Malay words, especially for HA applications. Since, most of the previous works were confined to wired microphone; this limitation of using wireless microphone type makes it an important area of the research. Research was carried out to develop SR word model for five (5) Malay words and five (5) English words as commands to activate and deactivate home appliances

    Dynamic signature verification based on hybrid wavelet-Fourier transform

    Get PDF
    In this paper, we propose a dynamic signature verification system which integrates hybrid of Discrete Wavelet Transform and Discrete Fourier Transform (DWT-DFT) for feature extraction. In feature matching, Euclidean distance and Enveloped Euclidean distance (EED) (a variant of Euclidean distance) are used. Distances of features are fused into a final score value and used to classify whether a genuine or a forgery signature. A benchmark database, SVC2004 which compose of Task 1 dataset and Task 2 dataset validate the effectiveness of this proposed system. Experimental results reveal a 7.08% EER for skilled forgeries and 2.37% EER of random forgeries in Task 1 dataset; and 8.61% EER for skilled forgeries and 2.05% EER for random forgeries in Task 2 datase
    corecore