10 research outputs found

    Capacity of Underspread Noncoherent WSSUS Fading Channels under Peak Signal Constraints

    Full text link
    We characterize the capacity of the general class of noncoherent underspread wide-sense stationary uncorrelated scattering (WSSUS) time-frequency-selective Rayleigh fading channels, under peak constraints in time and frequency and in time only. Capacity upper and lower bounds are found which are explicit in the channel's scattering function and allow to identify the capacity-maximizing bandwidth for a given scattering function and a given peak-to-average power ratio.Comment: To be presented at IEEE Int. Symp. Inf. Theory 2007, Nice, Franc

    Performance Analysis for Multichannel Reception of OOFSK Signaling

    Full text link
    In this paper, the error performance of on-off frequency shift keying (OOFSK) modulation over fading channels is analyzed when the receiver is equipped with multiple antennas. The analysis is conducted in two cases: the coherent scenario where the fading is perfectly known at the receiver, and the noncoherent scenario where neither the receiver nor the transmitter knows the fading coefficients. For both cases, the maximum a posteriori probability (MAP) detection rule is derived and analytical probability of error expressions are obtained. The effect of fading correlation among the receiver antennas is also studied. Simulation results indicate that for sufficiently low duty cycle values, lower probability of error values with respect to FSK signaling are achieved. Equivalently, when compared to FSK modulation, OOFSK with low duty cycle requires less energy to achieve the same probability of error, which renders this modulation a more energy efficient transmission technique.Comment: Proc. of the 2007 IEEE Wireless Communications and Networking Conferenc

    The Impact of Hard-Decision Detection on the Energy Efficiency of Phase and Frequency Modulation

    Full text link
    The central design challenge in next generation wireless systems is to have these systems operate at high bandwidths and provide high data rates while being cognizant of the energy consumption levels especially in mobile applications. Since communicating at very high data rates prohibits obtaining high bit resolutions from the analog-to-digital (A/D) converters, analysis of the energy efficiency under the assumption of hard-decision detection is called for to accurately predict the performance levels. In this paper, transmission over the additive white Gaussian noise (AWGN) channel, and coherent and noncoherent fading channels is considered, and the impact of hard-decision detection on the energy efficiency of phase and frequency modulations is investigated. Energy efficiency is analyzed by studying the capacity of these modulation schemes and the energy required to send one bit of information reliably in the low signal-to-noise ratio (SNR) regime. The capacity of hard-decision-detected phase and frequency modulations is characterized at low SNR levels through closed-form expressions for the first and second derivatives of the capacity at zero SNR. Subsequently, bit energy requirements in the low-SNR regime are identified. The increases in the bit energy incurred by hard-decision detection and channel fading are quantified. Moreover, practical design guidelines for the selection of the constellation size are drawn from the analysis of the spectral efficiency--bit energy tradeoff.Comment: To appear in the IEEE Transactions on Wireless Communication

    Noncoherent Capacity of Underspread Fading Channels

    Full text link
    We derive bounds on the noncoherent capacity of wide-sense stationary uncorrelated scattering (WSSUS) channels that are selective both in time and frequency, and are underspread, i.e., the product of the channel's delay spread and Doppler spread is small. For input signals that are peak constrained in time and frequency, we obtain upper and lower bounds on capacity that are explicit in the channel's scattering function, are accurate for a large range of bandwidth and allow to coarsely identify the capacity-optimal bandwidth as a function of the peak power and the channel's scattering function. We also obtain a closed-form expression for the first-order Taylor series expansion of capacity in the limit of large bandwidth, and show that our bounds are tight in the wideband regime. For input signals that are peak constrained in time only (and, hence, allowed to be peaky in frequency), we provide upper and lower bounds on the infinite-bandwidth capacity and find cases when the bounds coincide and the infinite-bandwidth capacity is characterized exactly. Our lower bound is closely related to a result by Viterbi (1967). The analysis in this paper is based on a discrete-time discrete-frequency approximation of WSSUS time- and frequency-selective channels. This discretization explicitly takes into account the underspread property, which is satisfied by virtually all wireless communication channels.Comment: Submitted to the IEEE Transactions on Information Theor

    On-off frequency-shift keying for wideband fading channels

    Get PDF
    M-ary on-off frequency-shift keying (OOFSK) is a digital modulation format in which M-ary FSK signaling is overlaid on on/off keying. This paper investigates the potential of this modulation format in the context of wideband fading channels. First, it is assumed that the receiver uses energy detection for the reception of OOFSK signals. Capacity expressions are obtained for the cases in which the receiver has perfect and imperfect fading side information. Power efficiency is investigated when the transmitter is subject to a peak-to-average power ratio (PAR) limitation or a peak power limitation. It is shown that under a PAR limitation, it is extremely power inefficient to operate in the very-low-SNR regime. On the other hand, if there is only a peak power limitation, it is demonstrated that power efficiency improves as one operates with smaller SNR and vanishing duty factor. Also studied are the capacity improvements that accrue when the receiver can track phase shifts in the channel or if the received signal has a specular component. To take advantage of those features, the phase of the modulation is also allowed to carry information. Copyright © 2006 M. C. Gursoy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1

    On-Off Frequency-Shift Keying for Wideband Fading Channels

    No full text
    -ary on-off frequency-shift keying (OOFSK) is a digital modulation format in which -ary FSK signaling is overlaid on on/off keying. This paper investigates the potential of this modulation format in the context of wideband fading channels. First, it is assumed that the receiver uses energy detection for the reception of OOFSK signals. Capacity expressions are obtained for the cases in which the receiver has perfect and imperfect fading side information. Power efficiency is investigated when the transmitter is subject to a peak-to-average power ratio (PAR) limitation or a peak power limitation. It is shown that under a PAR limitation, it is extremely power inefficient to operate in the very-low-SNR regime. On the other hand, if there is only a peak power limitation, it is demonstrated that power efficiency improves as one operates with smaller SNR and vanishing duty factor. Also studied are the capacity improvements that accrue when the receiver can track phase shifts in the channel or if the received signal has a specular component. To take advantage of those features, the phase of the modulation is also allowed to carry information.</p

    On-Off Frequency-Shift Keying for Wideband Fading Channels

    No full text
    M -ary on-off frequency-shift keying (OOFSK) is a digital modulation format in which M -ary FSK signaling is overlaid on on/off keying. This paper investigates the potential of this modulation format in the context of wideband fading channels. First, it is assumed that the receiver uses energy detection for the reception of OOFSK signals. Capacity expressions are obtained for the cases in which the receiver has perfect and imperfect fading side information. Power efficiency is investigated when the transmitter is subject to a peak-to-average power ratio (PAR) limitation or a peak power limitation. It is shown that under a PAR limitation, it is extremely power inefficient to operate in the very-low-SNR regime. On the other hand, if there is only a peak power limitation, it is demonstrated that power efficiency improves as one operates with smaller SNR and vanishing duty factor. Also studied are the capacity improvements that accrue when the receiver can track phase shifts in the channel or if the received signal has a specular component. To take advantage of those features, the phase of the modulation is also allowed to carry information.</p
    corecore