22,712 research outputs found

    Monotone Grid Drawings of Planar Graphs

    Full text link
    A monotone drawing of a planar graph GG is a planar straight-line drawing of GG where a monotone path exists between every pair of vertices of GG in some direction. Recently monotone drawings of planar graphs have been proposed as a new standard for visualizing graphs. A monotone drawing of a planar graph is a monotone grid drawing if every vertex in the drawing is drawn on a grid point. In this paper we study monotone grid drawings of planar graphs in a variable embedding setting. We show that every connected planar graph of nn vertices has a monotone grid drawing on a grid of size O(n)×O(n2)O(n)\times O(n^2), and such a drawing can be found in O(n) time

    On Universal Point Sets for Planar Graphs

    Full text link
    A set P of points in R^2 is n-universal, if every planar graph on n vertices admits a plane straight-line embedding on P. Answering a question by Kobourov, we show that there is no n-universal point set of size n, for any n>=15. Conversely, we use a computer program to show that there exist universal point sets for all n<=10 and to enumerate all corresponding order types. Finally, we describe a collection G of 7'393 planar graphs on 35 vertices that do not admit a simultaneous geometric embedding without mapping, that is, no set of 35 points in the plane supports a plane straight-line embedding of all graphs in G.Comment: Fixed incorrect numbers of universal point sets in the last par

    Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

    Full text link
    We study the following classes of beyond-planar graphs: 1-planar, IC-planar, and NIC-planar graphs. These are the graphs that admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A drawing of a graph is 1-planar if every edge is crossed at most once. A 1-planar drawing is IC-planar if no two pairs of crossing edges share a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing edges share two vertices. We study the relations of these beyond-planar graph classes (beyond-planar graphs is a collective term for the primary attempts to generalize the planar graphs) to right-angle crossing (RAC) graphs that admit compact drawings on the grid with few bends. We present four drawing algorithms that preserve the given embeddings. First, we show that every nn-vertex NIC-planar graph admits a NIC-planar RAC drawing with at most one bend per edge on a grid of size O(n)×O(n)O(n) \times O(n). Then, we show that every nn-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size O(n3)×O(n3)O(n^3) \times O(n^3). Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line

    Non-crossing frameworks with non-crossing reciprocals

    Full text link
    We study non-crossing frameworks in the plane for which the classical reciprocal on the dual graph is also non-crossing. We give a complete description of the self-stresses on non-crossing frameworks whose reciprocals are non-crossing, in terms of: the types of faces (only pseudo-triangles and pseudo-quadrangles are allowed); the sign patterns in the self-stress; and a geometric condition on the stress vectors at some of the vertices. As in other recent papers where the interplay of non-crossingness and rigidity of straight-line plane graphs is studied, pseudo-triangulations show up as objects of special interest. For example, it is known that all planar Laman circuits can be embedded as a pseudo-triangulation with one non-pointed vertex. We show that if such an embedding is sufficiently generic, then the reciprocal is non-crossing and again a pseudo-triangulation embedding of a planar Laman circuit. For a singular (i.e., non-generic) pseudo-triangulation embedding of a planar Laman circuit, the reciprocal is still non-crossing and a pseudo-triangulation, but its underlying graph may not be a Laman circuit. Moreover, all the pseudo-triangulations which admit a non-crossing reciprocal arise as the reciprocals of such, possibly singular, stresses on pseudo-triangulation embeddings of Laman circuits. All self-stresses on a planar graph correspond to liftings to piece-wise linear surfaces in 3-space. We prove characteristic geometric properties of the lifts of such non-crossing reciprocal pairs.Comment: 32 pages, 23 figure

    Planar embeddability of the vertices of a graph using a fixed point set is NP-hard

    Get PDF
    Let G = (V, E) be a graph with n vertices and let P be a set of n points in the plane. We show that deciding whether there is a planar straight-line embedding of G such that the vertices V are embedded onto the points P is NP-complete, even when G is 2-connected and 2-outerplanar. This settles an open problem posed in [P. Bose. On embedding an outer-planar graph in a point set. Comput. Geom. Theory Appl., 23:303-312, November 2002. A preliminary version appeared in Graph Drawing (Proc. GD ’97), LNCS 1353, pg. 25-36, F. Brandenberg, D. Eppstein, M.T. Goodrich, S.G. Kobourov, G. Liotta, and P. Mutzel. Selected open problems in graph drawing. In Graph Drawing (Proc. GD’03), LNCS, 2003. To appear y M. Kaufmann and R. Wiese. Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications, 6(1):115–129, 2002. A preliminary version appeared in Graph Drawing (Proc. GD ’99), LNCS 1731, pg. 165–174].Cornelis Lely Stichtin

    A Universal Point Set for 2-Outerplanar Graphs

    Full text link
    A point set SR2S \subseteq \mathbb{R}^2 is universal for a class G\cal G if every graph of G{\cal G} has a planar straight-line embedding on SS. It is well-known that the integer grid is a quadratic-size universal point set for planar graphs, while the existence of a sub-quadratic universal point set for them is one of the most fascinating open problems in Graph Drawing. Motivated by the fact that outerplanarity is a key property for the existence of small universal point sets, we study 2-outerplanar graphs and provide for them a universal point set of size O(nlogn)O(n \log n).Comment: 23 pages, 11 figures, conference version at GD 201
    corecore