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Abstract

Let G = (V, E) be a graph with n vertices and let P be a set of n points in the plane. We show that deciding
whether there is a planar straight-line embedding of G such that the vertices V are embedded onto the points P

is NP-complete, even when G is 2-connected and 2-outerplanar. This settles an open problem posed in [2,4,14].

1. Introduction

A geometric graph H is a graph G(H) together
with an injective mapping of its vertices into the
plane. An edge of the graph is drawn as a straight-
line segment joining its vertices. We use V (H) for
the set of points where the vertices of G(H) are
mapped to, and we do not make a distinction be-
tween the edges of G(H) and H . A planar geomet-
ric graph is a geometric graph such that its edges
intersect only at common vertices. In this case,
we say that H is a geometric planar embedding of
G(H). See [15] for a survey on geometric graphs.

Let P be a set of n points in the plane, and let G

be a graph with n vertices. What is the complexity
of deciding if there is a straight-line planar embed-
ding of G such that the vertices of G are mapped
onto P? This question has been posed as open
problem in [2,4,14], and here we show that this de-
cision problem is NP-complete. Let us rephrase the
result in terms of geometric graphs.
Theorem 1 Let P be a set of n points, and let G

be a graph on n vertices. Deciding if there exists

a geometric planar embedding H of G such that

V (H) = P is an NP-complete problem.

The reduction is from 3-partition, a strongly NP-
hard problem to be described below, and it con-
structs a 2-connected graph G. The main ideas of
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the proof are given in Section 2, and we use that
the maximal 3-connected blocks of a 2-connected
planar graph can be embedded in different faces. In
a 3-connected planar graph, all planar embeddings
are topologically equivalent due to Whitney’s the-
orem [10, Chapter 6]. Therefore, it does not seem
possible to extend our technique to show the hard-
ness for 3-connected planar graphs.

Related work A few variations of the problem of
embedding a planar graph into a fixed point set
have been considered. The problem of characteriz-
ing what class of graphs can be embedded into any
point set in general position (no three points be-
ing collinear) was posed in [12]. They showed that
the answer is the class of outerplanar graphs, that
is, graphs that admit a straight-line planar embed-
ding with all vertices in the outerface. This result
was rediscovered in [6], and efficient algorithms for
constructing such an embedding for a given graph
and a given point set are described in [2]. The cur-
rently best algorithm runs in O(n log3 n) time, al-
though the best known lower bound is Ω(n log n).

A tree is a special case of outerplanar graph. In
this case, we also can choose to which point the
root should be mapped. See [3,13,16] for the evo-
lution on this problem, also from the algorithmi-
cal point of view. For this setting, there are algo-
rithms running in O(n log n) time, which is worst
case optimal. Bipartite embeddings of trees were
considered in [1].
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Fig. 1. Graph G for the NP-hardness reduction.

If we allow each edge to be represented by a
polygonal path with at most two bends, then it
is always possible to get a planar embedding of a
planar graph that maps the vertices to a fixed point
set [14]. If a bijection between the vertices and the
point set is fixed, then we need O(n2) bends in total
to get a planar embedding of the graph, which is
also asymptotically tight in the worst case [17].

We finish by mentioning a related problem,
which was the initial motivation for this research.
A universal set for graphs with n vertices is a
set of points Sn such that any planar graph with
n vertices has a straight-line planar embedding
whose vertices are a subset of Sn. Asymptotically,
the smallest universal set is known to have size at
least 1.098n [7], and it is bounded by O(n2) [8,18].
Characterizing the asymptotic size of the smallest
universal set is an interesting open problem [9,
Problem 45].

2. Planar embeddability is NP-complete

It is clear that the problem belongs to NP: a ge-
ometric graph H with V (H) = P and G(H) ≡ G

can be described by the bijection between V (G)
and P , and for a given bijection we can test in
polynomial time whether it actually is a planar ge-
ometric graph; therefore, we can take as certificate
the bijection between V (G) and P .

For showing the NP-hardness, the reduction is
from 3-partition.

Problem: 3-partition
Input: A natural number B, and 3n natural num-
bers a1, . . . , a3n with B

4
< ai < B

2
.

Output: n disjoint sets S1, . . . , Sn such that for
all Sj we have Sj ⊂ {a1, . . . , a3n}, |Sj | = 3, and∑

a∈Sj
a = B.

We will use that 3-partition is a strongly NP-hard
problem, that is, it is NP-hard even if B is bounded
by a polynomial in n [11]. Observe that because
B
4

< ai < B
2
, it does not make sense to have sets
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Fig. 2. Point set P for the NP-hardness reduction. K = (B + 2)n.

Sj with fewer or more than 3 elements. That is, it
is equivalent to ask for subdividing all the numbers
into disjoint sets that sum to B. Of course, we
can assume that

∑
3n

i=1
ai = Bn, as otherwise it is

impossible that a solution exists.
In the following, we only give the reduction,

and do not discuss how the solution to the con-
structed problem relates to the original problem.
Details can be found in the full version [5]. Given
a 3-partition instance, we construct the following
graph G (see Figure 1):
– Start with a 4-cycle with vertices v0, . . . , v3, and

edges (vi−1, vi mod 4). The vertices v0 and v2 will
play a special role.

– For each ai in the input, make a path Bi consist-
ing of ai vertices, and put an edge between each
of those vertices and the vertices v0, v2.

– Construct n−1 triangles T1, . . . , Tn−1. For each
triangle Ti, put edges between each of its vertices
and v2, and edges between two of its vertices and
v0. We call each of these structures a separator
(the reason for this will become clear later).

– Make a path C of (B + 3)n vertices, and put
edges between each of the vertices in C and v0.
Furthermore, put an edge between one end of
the path and v1, and another edge between the
other end and v3.
It is easy to see that G is planar; in fact, we are

giving a planar embedding of it in Figure 1. The
idea is to design a point set P such that G \ (B1 ∪
· · · ∪ B3n) can be embedded onto P in essentially
one way. Furthermore, the embedding of G\ (B1 ∪

· · ·∪B3n) will decompose the rest of the points into
n groups, each of B vertices and lying in a different
face. The embedding of the remaining vertices B1∪
· · · ∪ B3n will be possible in a planar way if and
only if the paths Bi can be decomposed into groups
of exactly B vertices, which is equivalent to the
original 3-partition instance. The following point
set P does the work (see Figure 2):
– Let K := (B + 2)n.
– Place (B + 3)n points at the coordinates

(0,−n), (0,−(n − 1)), . . . , (0,−1) and at the
coordinates (0, 1), (0, 2), . . . , (0, K).

– Place points p0 := (1, 0), p1 := (K, K), p2 :=
(2K, 0), p3 := (K,−n). In the figure, these
points are shown as boxes and are labeled.

– For each i ∈ {0, . . . , n − 1}, place the group of
B points (K,−2 + (B + 2)i + 1), (K,−2 + (B +
2)i + 2), . . . , (K,−2 + (B + 2)i + B).

– For each i ∈ {1, . . . , n − 1}, place the group of
three points (K, (B + 2)i − 3), (K, (B + 2)i −
2), . . . , (K +1, (B +2)i− 3). In the figure, these
points are shown as empty circles.

3. Concluding remarks

The point set P that we have constructed has
many collinear points. However, in the proof we do
not use this fact, and so it is easy to modify the
reduction in such a way that no three points of P

are collinear. Probably, the easiest way for keeping
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integer coordinates is replacing each of the points
lying in a vertical line by points lying in a parabola,
and adjusting the value K accordingly. Therefore,
the result remains valid even if P is in general po-
sition, meaning that no 3 points are collinear.

In the proof, the graph G that we constructed
is 2-outerplanar, as shown in Figure 1. k-
outerplanarity is a generalization of outerplanarity
that is defined inductively. A planar embedding of
a graph is k-outerplanar if removing the vertices
of the outer face produces a (k − 1)-outerplanar
embedding, where 1-outerplanar stands for an
outerplanar embedding. A graph is k-outerplanar
if it admits a k-outerplanar embedding. For out-
erplanar graphs, the embedding problem is poly-
nomially solvable [2], but for 2-outerplanar we
showed that it is NP-complete. Therefore, regard-
ing outerplanarity, our result is tight.

The graph G that we constructed in the proof
is 2-connected; removing the vertices v1, v3 discon-
nects the graph. As mentioned in the introduc-
tion, we use this fact in the proof because in a 2-
connected graph the maximal 3-connected blocks
can flip from one face to another one. Therefore, it
would be interesting to find out the complexity of
the problem when the graph G is 3-connected, and
more generally, the complexity when the topology
of the embedding is specified beforehand.
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