2,189 research outputs found

    Planar Reachability in Linear Space and Constant Time

    Full text link
    We show how to represent a planar digraph in linear space so that distance queries can be answered in constant time. The data structure can be constructed in linear time. This representation of reachability is thus optimal in both time and space, and has optimal construction time. The previous best solution used O(nlogn)O(n\log n) space for constant query time [Thorup FOCS'01].Comment: 20 pages, 5 figures, submitted to FoC

    Balance constants for Coxeter groups

    Full text link
    The 1/31/3-2/32/3 Conjecture, originally formulated in 1968, is one of the best-known open problems in the theory of posets, stating that the balance constant (a quantity determined by the linear extensions) of any non-total order is at least 1/31/3. By reinterpreting balance constants of posets in terms of convex subsets of the symmetric group, we extend the study of balance constants to convex subsets CC of any Coxeter group. Remarkably, we conjecture that the lower bound of 1/31/3 still applies in any finite Weyl group, with new and interesting equality cases appearing. We generalize several of the main results towards the 1/31/3-2/32/3 Conjecture to this new setting: we prove our conjecture when CC is a weak order interval below a fully commutative element in any acyclic Coxeter group (an generalization of the case of width-two posets), we give a uniform lower bound for balance constants in all finite Weyl groups using a new generalization of order polytopes to this context, and we introduce generalized semiorders for which we resolve the conjecture. We hope this new perspective may shed light on the proper level of generality in which to consider the 1/31/3-2/32/3 Conjecture, and therefore on which methods are likely to be successful in resolving it.Comment: 27 page

    Configuration Spaces of Manifolds with Boundary

    Full text link
    We study ordered configuration spaces of compact manifolds with boundary. We show that for a large class of such manifolds, the real homotopy type of the configuration spaces only depends on the real homotopy type of the pair consisting of the manifold and its boundary. We moreover describe explicit real models of these configuration spaces using three different approaches. We do this by adapting previous constructions for configuration spaces of closed manifolds which relied on Kontsevich's proof of the formality of the little disks operads. We also prove that our models are compatible with the richer structure of configuration spaces, respectively a module over the Swiss-Cheese operad, a module over the associative algebra of configurations in a collar around the boundary of the manifold, and a module over the little disks operad.Comment: 107 page

    Moduli stacks of algebraic structures and deformation theory

    Full text link
    We connect the homotopy type of simplicial moduli spaces of algebraic structures to the cohomology of their deformation complexes. Then we prove that under several assumptions, mapping spaces of algebras over a monad in an appropriate diagram category form affine stacks in the sense of Toen-Vezzosi's homotopical algebraic geometry. This includes simplicial moduli spaces of algebraic structures over a given object (for instance a cochain complex). When these algebraic structures are parametrised by properads, the tangent complexes give the known cohomology theory for such structures and there is an associated obstruction theory for infinitesimal, higher order and formal deformations. The methods are general enough to be adapted for more general kinds of algebraic structures.Comment: several corrections, especially in sections 6 and 7. Final version, to appear in the J. Noncommut. Geo

    Open Graphs and Monoidal Theories

    Full text link
    String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. The distinguishing feature of these diagrams is that edges need not be connected to vertices at both ends, and these unconnected ends can be interpreted as the inputs and outputs of a diagram. In this paper, we give a concrete construction for string diagrams using a special kind of typed graph called an open-graph. While the category of open-graphs is not itself adhesive, we introduce the notion of a selective adhesive functor, and show that such a functor embeds the category of open-graphs into the ambient adhesive category of typed graphs. Using this functor, the category of open-graphs inherits "enough adhesivity" from the category of typed graphs to perform double-pushout (DPO) graph rewriting. A salient feature of our theory is that it ensures rewrite systems are "type-safe" in the sense that rewriting respects the inputs and outputs. This formalism lets us safely encode the interesting structure of a computational model, such as evaluation dynamics, with succinct, explicit rewrite rules, while the graphical representation absorbs many of the tedious details. Although topological formalisms exist for string diagrams, our construction is discreet, finitary, and enjoys decidable algorithms for composition and rewriting. We also show how open-graphs can be parametrised by graphical signatures, similar to the monoidal signatures of Joyal and Street, which define types for vertices in the diagrammatic language and constraints on how they can be connected. Using typed open-graphs, we can construct free symmetric monoidal categories, PROPs, and more general monoidal theories. Thus open-graphs give us a handle for mechanised reasoning in monoidal categories.Comment: 31 pages, currently technical report, submitted to MSCS, waiting review
    corecore