1,432 research outputs found

    Suboptimality of the Karhunen-Loève transform for transform coding

    Get PDF
    We examine the performance of the Karhunen-Loeve transform (KLT) for transform coding applications. The KLT has long been viewed as the best available block transform for a system that orthogonally transforms a vector source, scalar quantizes the components of the transformed vector using optimal bit allocation, and then inverse transforms the vector. This paper treats fixed-rate and variable-rate transform codes of non-Gaussian sources. The fixed-rate approach uses an optimal fixed-rate scalar quantizer to describe the transform coefficients; the variable-rate approach uses a uniform scalar quantizer followed by an optimal entropy code, and each quantized component is encoded separately. Earlier work shows that for the variable-rate case there exist sources on which the KLT is not unique and the optimal quantization and coding stage matched to a "worst" KLT yields performance as much as 1.5 dB worse than the optimal quantization and coding stage matched to a "best" KLT. In this paper, we strengthen that result to show that in both the fixed-rate and the variable-rate coding frameworks there exist sources for which the performance penalty for using a "worst" KLT can be made arbitrarily large. Further, we demonstrate in both frameworks that there exist sources for which even a best KLT gives suboptimal performance. Finally, we show that even for vector sources where the KLT yields independent coefficients, the KLT can be suboptimal for fixed-rate coding

    Separable Karhunen Loeve transforms for the weighted universal transform coding algorithm

    Get PDF
    The weighted universal transform code (WUTC) is a two-stage transform code that replaces JPEG's single, non-optimal transform code with a jointly designed collection of transform codes to achieve good performance across a broader class of possible sources. Unfortunately, the performance gains of WUTC are achieved at the expense of significant increases in computational complexity and larger codes. We here present a faster, more space-efficient WUTC algorithm. The new algorithm uses separable coding instead of direct KLT. While separable coding gives performance comparable to that of WUTC, it uses only 1/8 of the floating-point multiplications and 1/32 of storage of direct KLT. Experimental results included in this work compare the performance of new separable WUTC with both the WUTC and other fast variations of that algorithm

    Reduced-dimension linear transform coding of distributed correlated signals with incomplete observations

    Get PDF
    We study the problem of optimal reduced-dimension linear transform coding and reconstruction of a signal based on distributed correlated observations of the signal. In the mean square estimation context this involves finding he optimal signal representation based on multiple incomplete or only partial observations that are correlated. In particular this leads to the study of finding the optimal Karhunen-Loeve basis based on the censored observations. The problem has been considered previously by Gestpar, Dragotti and Vitterli in the context of jointly Gaussian random variables based on using conditional covariances. In this paper, we derive the estimation results in the more general setting of second-order random variables with arbitrary distributions, using entirely different techniques based on the idea of innovations. We explicitly solve the single transform coder case, give a characterization of optimality in the multiple distributed transform coders scenario and provide additional insights into the structure of the problm

    Generalized Triangular Decomposition in Transform Coding

    Get PDF
    A general family of optimal transform coders (TCs) is introduced here based on the generalized triangular decomposition (GTD) developed by Jiang This family includes the Karhunen-Loeve transform (KLT) and the generalized version of the prediction-based lower triangular transform (PLT) introduced by Phoong and Lin as special cases. The coding gain of the entire family, with optimal bit allocation, is equal to that of the KLT and the PLT. Even though the original PLT introduced by Phoong is not applicable for vectors that are not blocked versions of scalar wide sense stationary processes, the GTD-based family includes members that are natural extensions of the PLT, and therefore also enjoy the so-called MINLAB structure of the PLT, which has the unit noise-gain property. Other special cases of the GTD-TC are the geometric mean decomposition (GMD) and the bidiagonal decomposition (BID) transform coders. The GMD-TC in particular has the property that the optimum bit allocation is a uniform allocation; this is because all its transform domain coefficients have the same variance, implying thereby that the dynamic ranges of the coefficients to be quantized are identical

    Mathematical transforms and image compression: A review

    Get PDF
    It is well known that images, often used in a variety of computer and other scientific and engineering applications, are difficult to store and transmit due to their sizes. One possible solution to overcome this problem is to use an efficient digital image compression technique where an image is viewed as a matrix and then the operations are performed on the matrix. All the contemporary digital image compression systems use various mathematical transforms for compression. The compression performance is closely related to the performance by these mathematical transforms in terms of energy compaction and spatial frequency isolation by exploiting inter-pixel redundancies present in the image data. Through this paper, a comprehensive literature survey has been carried out and the pros and cons of various transform-based image compression models have also been discussed

    Computer program for fast Karhunen Loeve transform algorithm

    Get PDF
    The fast KL transform algorithm was applied for data compression of a set of four ERTS multispectral images and its performance was compared with other techniques previously studied on the same image data. The performance criteria used here are mean square error and signal to noise ratio. The results obtained show a superior performance of the fast KL transform coding algorithm on the data set used with respect to the above stated perfomance criteria. A summary of the results is given in Chapter I and details of comparisons and discussion on conclusions are given in Chapter IV
    corecore