4,027 research outputs found

    On variable-weighted exact satisfiability problems

    Get PDF
    We show that the NP-hard optimization problems minimum and maximum weight exact satisfiability (XSAT) for a CNF formula C over n propositional variables equipped with arbitrary real-valued weights can be solved in O(|C|2^{0.2441n}) time. To the best of our knowledge, the algorithms presented here are the first handling weighted XSAT optimization versions in non-trivial worst case time. We also investigate the corresponding weighted counting problems, namely we show that the number of all minimum, resp. maximum, weight exact satisfiability solutions of an arbitrarily weighted formula can be determined in O(n^2cdot |C|+2^{0.40567n}) time. In recent years only the unweighted counterparts of these problems have been studied cite{dahl,dahl2,porschen}

    On variable-weighted exact satisfiability problems

    Get PDF
    We show that the NP-hard optimization problems minimum and maximum weight exact satisfiability (XSAT) for a CNF formula C over n propositional variables equipped with arbitrary real-valued weights can be solved in O(|C|2^{0.2441n}) time. To the best of our knowledge, the algorithms presented here are the first handling weighted XSAT optimization versions in non-trivial worst case time. We also investigate the corresponding weighted counting problems, namely we show that the number of all minimum, resp. maximum, weight exact satisfiability solutions of an arbitrarily weighted formula can be determined in O(n^2cdot |C|+2^{0.40567n}) time. In recent years only the unweighted counterparts of these problems have been studied cite{dahl,dahl2,porschen}

    Fuzzy Maximum Satisfiability

    Full text link
    In this paper, we extend the Maximum Satisfiability (MaxSAT) problem to {\L}ukasiewicz logic. The MaxSAT problem for a set of formulae {\Phi} is the problem of finding an assignment to the variables in {\Phi} that satisfies the maximum number of formulae. Three possible solutions (encodings) are proposed to the new problem: (1) Disjunctive Linear Relations (DLRs), (2) Mixed Integer Linear Programming (MILP) and (3) Weighted Constraint Satisfaction Problem (WCSP). Like its Boolean counterpart, the extended fuzzy MaxSAT will have numerous applications in optimization problems that involve vagueness.Comment: 10 page

    A Satisfiability Algorithm for Sparse Depth Two Threshold Circuits

    Full text link
    We give a nontrivial algorithm for the satisfiability problem for cn-wire threshold circuits of depth two which is better than exhaustive search by a factor 2^{sn} where s= 1/c^{O(c^2)}. We believe that this is the first nontrivial satisfiability algorithm for cn-wire threshold circuits of depth two. The independently interesting problem of the feasibility of sparse 0-1 integer linear programs is a special case. To our knowledge, our algorithm is the first to achieve constant savings even for the special case of Integer Linear Programming. The key idea is to reduce the satisfiability problem to the Vector Domination Problem, the problem of checking whether there are two vectors in a given collection of vectors such that one dominates the other component-wise. We also provide a satisfiability algorithm with constant savings for depth two circuits with symmetric gates where the total weighted fan-in is at most cn. One of our motivations is proving strong lower bounds for TC^0 circuits, exploiting the connection (established by Williams) between satisfiability algorithms and lower bounds. Our second motivation is to explore the connection between the expressive power of the circuits and the complexity of the corresponding circuit satisfiability problem

    Probabilistic Inference Modulo Theories

    Get PDF
    We present SGDPLL(T), an algorithm that solves (among many other problems) probabilistic inference modulo theories, that is, inference problems over probabilistic models defined via a logic theory provided as a parameter (currently, propositional, equalities on discrete sorts, and inequalities, more specifically difference arithmetic, on bounded integers). While many solutions to probabilistic inference over logic representations have been proposed, SGDPLL(T) is simultaneously (1) lifted, (2) exact and (3) modulo theories, that is, parameterized by a background logic theory. This offers a foundation for extending it to rich logic languages such as data structures and relational data. By lifted, we mean algorithms with constant complexity in the domain size (the number of values that variables can take). We also detail a solver for summations with difference arithmetic and show experimental results from a scenario in which SGDPLL(T) is much faster than a state-of-the-art probabilistic solver.Comment: Submitted to StarAI-16 workshop as closely revised version of IJCAI-16 pape
    corecore