7 research outputs found

    An Integrated Haptic System combining VR, a Markerless Motion Capture System & Tactile Actuators

    Get PDF
    In the industrial environments, it is common that robotic or remote interaction with both rigid objects and soft or deformable objects is required. However, it is usual in such an environment that only one mode of manipulation is used, and that little or no distinction is made between rigid or deformable objects. The ability to โ€œfeelโ€ or touch an object easy a naturalistic way to determine what type of object is being manipulated. By feeling an object appropriate manipulation techniques can be applied. A novel Virtual Reality (VR) interface is presented that incorporates tactile feedback in order to โ€œfeelโ€ objects being manipulated. Incorporation of an important extra โ€œsenseโ€ into such a system allows far more nuanced and dexterous interaction to occur in manufacturing environments that may be โ€œmessyโ€, have imprecisely located objects or that have a range of different materials present

    Effects of Haptic Feedback on the Wrist during Virtual Manipulation

    Full text link
    As an alternative to thimble devices for the fingertips, we investigate haptic systems that apply stimulus to the user's forearm. Our aim is to provide effective interaction with virtual objects, despite the lack of co-location of virtual and real-world contacts, while taking advantage of relatively large skin area and ease of mounting on the forearm. We developed prototype wearable haptic devices that provide skin deformation in the normal and shear directions, and performed a user study to determine the effects of haptic feedback in different directions and at different locations near the wrist during virtual manipulation. Participants performed significantly better while discriminating stiffness values of virtual objects with normal forces compared to shear forces. We found no differences in performance or participant preferences with regard to stimulus on the dorsal, ventral, or both sides of the forearm.Comment: 7 pages, submitted conference paper for IEEE Haptics Symposium 202

    Effects of Haptic Feedback on the Wrist during Virtual Manipulation

    Get PDF
    We propose a haptic system for virtual manipulation to provide feedback on the user's forearm instead of the fingertips. In addition to visual rendering of the manipulation with virtual fingertips, we employ a device to deliver normal or shear skin-stretch at multiple points near the wrist. To understand how design parameters influence the experience, we investigated the effect of the number and location of sensory feedback on stiffness perception. Participants compared stiffness values of virtual objects, while the haptic bracelet provided interaction feedback on the dorsal, ventral, or both sides of the wrist. Stiffness discrimination judgments and duration, as well as qualitative results collected verbally, indicate no significant difference in stiffness perception with stimulation at different and multiple locations.Comment: 2 pages, work-in-progress paper on haptics symposium, 202

    Wearable Vibrotactile Haptic Device for Stiffness Discrimination during Virtual Interactions

    Get PDF
    In this paper, we discuss the development of cost effective, wireless, and wearable vibrotactile haptic device for stiffness perception during an interaction with virtual objects. Our experimental setup consists of haptic device with five vibrotactile actuators, virtual reality environment tailored in Unity 3D integrating the Oculus Rift Head Mounted Display (HMD) and the Leap Motion controller. The virtual environment is able to capture touch inputs from users. Interaction forces are then rendered at 500 Hz and fed back to the wearable setup stimulating fingertips with ERM vibrotactile actuators. Amplitude and frequency of vibrations are modulated proportionally to the interaction force to simulate the stiffness of a virtual object. A quantitative and qualitative study is done to compare the discrimination of stiffness on virtual linear spring in three sensory modalities: visual only feedback, tactile only feedback, and their combination. A common psychophysics method called the Two Alternative Forced Choice (2AFC) approach is used for quantitative analysis using Just Noticeable Difference (JND) and Weber Fractions (WF). According to the psychometric experiment result, average Weber fraction values of 0.39 for visual only feedback was improved to 0.25 by adding the tactile feedback

    ์†๋ ํ–…ํ‹ฑ ์žฅ๋น„๋ฅผ ์œ„ํ•œ ์˜์‚ฌ ํ–…ํ‹ฑ์˜ ํ™œ์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2016. 2. ์ด๋™์ค€.We propose a novel design of cutaneous fingertip haptic device and approach of integrating pseudo-haptics into our cutaneous haptic device. With 2-DoF cutaneous device, angle-force calibration result is presented for its operation. Then, 3-DoF cutaneous haptic device is designed for more realistic contact feedback in virtual reality (VR). Preliminary result of integrating cutaneous device and hand tracking device for complete wearable haptic interface is also demonstrated. Meanwhile, we explore possible utility of pseudo-haptics for cutaneous fingertip haptic device, whose performance is inherently limited due to the lack of kinesthetic feedback. We experimentally demonstrate that: 1) pseudo-haptics can render virtual stiffness to be more rigid or softer only by modulating visual cueand 2) pseudo-haptics can be used to expand the range of the perceived virtual stiffness to be doubled.Chapter 1 Introduction 1 1.1 Motivation and Objectives 1 1.2 Related Works 3 Chapter 2 Cutaneous Fingertip Haptic Device 6 2.1 2-DoF Cutaneous Haptic Device 6 2.1.1 Design and Specification 6 2.1.2 Angle-Force Calibration 8 2.1.3 Application of 2-DoF Cutaneous Haptic Device 10 2.2 3-DoF Cutaneous Haptic Device 11 2.2.1 Design and Specification 11 2.2.2 Control Design 14 2.2.3 IMU Distortion Offset Calibration 17 2.2.4 Device Validation 20 2.2.5 Integration with Wearable Hand Tracking Interface 21 Chapter 3 Pseudo-Haptics with Cutaneous Haptic Feedback 25 3.1 Limitation of Cutaneous Haptic Device 25 3.2 Application of Pseudo-Haptics Effect 26 Chapter 4 Experimental Study 28 4.1 Experimental Settings 28 4.2 Experiment #1 32 4.3 Experiment #2 34 4.4 Experiment #3 36 4.5 Discussion 38 Chapter 5 Conclusion and Future Work 40 5.1 Conclusion 40 5.2 Future Work 41 Bibliography 42 ์š”์•ฝ 50Maste

    On utilizing pseudo-haptics for cutaneous fingertip haptic device

    No full text
    corecore