4 research outputs found

    Practical Solutions to the Non-Minimum Phase and Vibration Problems Under the Disturbance Rejection Paradigm

    Get PDF
    This dissertation tackles two kinds of control problems under the disturbance rejection paradigm (DRP): 1) the general problem of non-minimum phase (NMP) systems, such as systems with right half plane (RHP) zeros and those with time delay 2) the specific problem of vibration, a prevailing problem facing practicing engineers in the real world of industrial control. It is shown that the DRP brings to the table a refreshingly novel way of thinking in tackling the persistently challenging problems in control. In particular, the problem of NMP has confounded researchers for decades in trying to find a satisfactory solution that is both rigorous and practical. The active disturbance rejection control (ADRC), originated from DRP, provides a potential solution. Even more intriguingly, the DRP provides a new framework to tackle the ubiquitous problem of vibration, whether it is found in the resonant modes in industrial motion control with compliant load, which is almost always the case, or in the microphonics of superconducting radio frequency (SRF) cavities in high energy particle accelerators. That is, whether the vibration is caused by the environment or by the characteristics of process dynamics, DRP provides a single framework under which the problem is better understood and resolved. New solutions are tested and validated in both simulations and experiments, demonstrating the superiority of the new design over the previous ones. For systems with time delay, the stability characteristic of the proposed solution is analyze

    Practical Solutions to the Non-Minimum Phase and Vibration Problems Under the Disturbance Rejection Paradigm

    Get PDF
    This dissertation tackles two kinds of control problems under the disturbance rejection paradigm (DRP): 1) the general problem of non-minimum phase (NMP) systems, such as systems with right half plane (RHP) zeros and those with time delay 2) the specific problem of vibration, a prevailing problem facing practicing engineers in the real world of industrial control. It is shown that the DRP brings to the table a refreshingly novel way of thinking in tackling the persistently challenging problems in control. In particular, the problem of NMP has confounded researchers for decades in trying to find a satisfactory solution that is both rigorous and practical. The active disturbance rejection control (ADRC), originated from DRP, provides a potential solution. Even more intriguingly, the DRP provides a new framework to tackle the ubiquitous problem of vibration, whether it is found in the resonant modes in industrial motion control with compliant load, which is almost always the case, or in the microphonics of superconducting radio frequency (SRF) cavities in high energy particle accelerators. That is, whether the vibration is caused by the environment or by the characteristics of process dynamics, DRP provides a single framework under which the problem is better understood and resolved. New solutions are tested and validated in both simulations and experiments, demonstrating the superiority of the new design over the previous ones. For systems with time delay, the stability characteristic of the proposed solution is analyze

    Studies on Data-Driven Controller Tuning for Cascade Control Systems

    Get PDF
    13301甲第4623号博士(工学)金沢大学博士論文本文Full 以下に掲載:Journal of Robotics and Mechatronics 28(5) pp.739-744 2016. FUJI TECHNOLOGY PRESS LTD. 共著者:Huy Quang Nguyen, Osamu Kaneko, Yoshihiko Kitazak

    Radiotherapy Cancer Treatment: Investigating Real-Time Position and Dose Control, the Sensor-Delayed Plant Output Estimation Problem, and the Nonovershooting Step Response Problem

    Get PDF
    For over a century, physicians have prescribed x-ray radiation to destroy or impede the growth of cancerous tumours. Modern radiation therapy machines shape the radiation beam to balance the competing goals of maximizing irradiation of cancerous tissue and minimizing irradiation of healthy tissue, an objective complicated by tumour motion during the treatment and errors positioning the patient to align the tumour with the radiation beam. Recent medical imaging advances have motivated interest in using feedback during radiation therapy to track the tumour in real time and mitigate these complications. This thesis investigates how real-time feedback control can be used to track the tumour and focus the radiation beam tightly around the tumour. Improving on these results, a feedback control system is proposed for intensity modulated radiation therapy which allows a non-uniform radiation dose to be applied to the tumour. Motivated by the results of the proposed control systems, this thesis also examines two theoretical control problems: estimating the output of an unknown system when a sensor delay prevents its direct measurement, and designing a controller to provide an arbitrarily fast nonovershooting step response
    corecore