1,530 research outputs found

    Non-modal analysis of spectral element methods: Towards accurate and robust large-eddy simulations

    Get PDF
    We introduce a \textit{non-modal} analysis technique that characterizes the diffusion properties of spectral element methods for linear convection-diffusion systems. While strictly speaking only valid for linear problems, the analysis is devised so that it can give critical insights on two questions: (i) Why do spectral element methods suffer from stability issues in under-resolved computations of nonlinear problems? And, (ii) why do they successfully predict under-resolved turbulent flows even without a subgrid-scale model? The answer to these two questions can in turn provide crucial guidelines to construct more robust and accurate schemes for complex under-resolved flows, commonly found in industrial applications. For illustration purposes, this analysis technique is applied to the hybridized discontinuous Galerkin methods as representatives of spectral element methods. The effect of the polynomial order, the upwinding parameter and the P\'eclet number on the so-called \textit{short-term diffusion} of the scheme are investigated. From a purely non-modal analysis point of view, polynomial orders between 22 and 44 with standard upwinding are well suited for under-resolved turbulence simulations. For lower polynomial orders, diffusion is introduced in scales that are much larger than the grid resolution. For higher polynomial orders, as well as for strong under/over-upwinding, robustness issues can be expected. The non-modal analysis results are then tested against under-resolved turbulence simulations of the Burgers, Euler and Navier-Stokes equations. While devised in the linear setting, our non-modal analysis succeeds to predict the behavior of the scheme in the nonlinear problems considered

    An explicit predictor-corrector solver with applications to Burgers' equation

    Get PDF
    Forward Euler's explicit, finite-difference formula of extrapolation, is used as a predictor and a convex formula as a corrector to integrate differential equations numerically. An application has been made to Burger's equation

    On the fourth-order accurate compact ADI scheme for solving the unsteady Nonlinear Coupled Burgers' Equations

    Full text link
    The two-dimensional unsteady coupled Burgers' equations with moderate to severe gradients, are solved numerically using higher-order accurate finite difference schemes; namely the fourth-order accurate compact ADI scheme, and the fourth-order accurate Du Fort Frankel scheme. The question of numerical stability and convergence are presented. Comparisons are made between the present schemes in terms of accuracy and computational efficiency for solving problems with severe internal and boundary gradients. The present study shows that the fourth-order compact ADI scheme is stable and efficient
    corecore