27 research outputs found

    Solving Shift Register Problems over Skew Polynomial Rings using Module Minimisation

    Get PDF
    For many algebraic codes the main part of decoding can be reduced to a shift register synthesis problem. In this paper we present an approach for solving generalised shift register problems over skew polynomial rings which occur in error and erasure decoding of ℓ\ell-Interleaved Gabidulin codes. The algorithm is based on module minimisation and has time complexity O(ℓμ2)O(\ell \mu^2) where μ\mu measures the size of the input problem.Comment: 10 pages, submitted to WCC 201

    Fast Encoding and Decoding of Gabidulin Codes

    Full text link
    Gabidulin codes are the rank-metric analogs of Reed-Solomon codes and have a major role in practical error control for network coding. This paper presents new encoding and decoding algorithms for Gabidulin codes based on low-complexity normal bases. In addition, a new decoding algorithm is proposed based on a transform-domain approach. Together, these represent the fastest known algorithms for encoding and decoding Gabidulin codes.Comment: 5 pages, 1 figure, to be published at ISIT 200

    List and Unique Error-Erasure Decoding of Interleaved Gabidulin Codes with Interpolation Techniques

    Full text link
    A new interpolation-based decoding principle for interleaved Gabidulin codes is presented. The approach consists of two steps: First, a multi-variate linearized polynomial is constructed which interpolates the coefficients of the received word and second, the roots of this polynomial have to be found. Due to the specific structure of the interpolation polynomial, both steps (interpolation and root-finding) can be accomplished by solving a linear system of equations. This decoding principle can be applied as a list decoding algorithm (where the list size is not necessarily bounded polynomially) as well as an efficient probabilistic unique decoding algorithm. For the unique decoder, we show a connection to known unique decoding approaches and give an upper bound on the failure probability. Finally, we generalize our approach to incorporate not only errors, but also row and column erasures.Comment: accepted for Designs, Codes and Cryptography; presented in part at WCC 2013, Bergen, Norwa

    Row Reduction Applied to Decoding of Rank Metric and Subspace Codes

    Get PDF
    We show that decoding of ℓ\ell-Interleaved Gabidulin codes, as well as list-ℓ\ell decoding of Mahdavifar--Vardy codes can be performed by row reducing skew polynomial matrices. Inspired by row reduction of \F[x] matrices, we develop a general and flexible approach of transforming matrices over skew polynomial rings into a certain reduced form. We apply this to solve generalised shift register problems over skew polynomial rings which occur in decoding ℓ\ell-Interleaved Gabidulin codes. We obtain an algorithm with complexity O(ℓμ2)O(\ell \mu^2) where μ\mu measures the size of the input problem and is proportional to the code length nn in the case of decoding. Further, we show how to perform the interpolation step of list-ℓ\ell-decoding Mahdavifar--Vardy codes in complexity O(ℓn2)O(\ell n^2), where nn is the number of interpolation constraints.Comment: Accepted for Designs, Codes and Cryptograph

    Error-Erasure Decoding of Linearized Reed-Solomon Codes in the Sum-Rank Metric

    Full text link
    Codes in the sum-rank metric have various applications in error control for multishot network coding, distributed storage and code-based cryptography. Linearized Reed-Solomon (LRS) codes contain Reed-Solomon and Gabidulin codes as subclasses and fulfill the Singleton-like bound in the sum-rank metric with equality. We propose the first known error-erasure decoder for LRS codes to unleash their full potential for multishot network coding. The presented syndrome-based Berlekamp-Massey-like error-erasure decoder can correct tFt_F full errors, tRt_R row erasures and tCt_C column erasures up to 2tF+tR+tC≤n−k2t_F + t_R + t_C \leq n-k in the sum-rank metric requiring at most O(n2)\mathcal{O}(n^2) operations in Fqm\mathbb{F}_{q^m}, where nn is the code's length and kk its dimension. We show how the proposed decoder can be used to correct errors in the sum-subspace metric that occur in (noncoherent) multishot network coding.Comment: 6 pages, presented at ISIT 202

    Topics on Reliable and Secure Communication using Rank-Metric and Classical Linear Codes

    Get PDF

    Rank Minimization over Finite Fields: Fundamental Limits and Coding-Theoretic Interpretations

    Full text link
    This paper establishes information-theoretic limits in estimating a finite field low-rank matrix given random linear measurements of it. These linear measurements are obtained by taking inner products of the low-rank matrix with random sensing matrices. Necessary and sufficient conditions on the number of measurements required are provided. It is shown that these conditions are sharp and the minimum-rank decoder is asymptotically optimal. The reliability function of this decoder is also derived by appealing to de Caen's lower bound on the probability of a union. The sufficient condition also holds when the sensing matrices are sparse - a scenario that may be amenable to efficient decoding. More precisely, it is shown that if the n\times n-sensing matrices contain, on average, \Omega(nlog n) entries, the number of measurements required is the same as that when the sensing matrices are dense and contain entries drawn uniformly at random from the field. Analogies are drawn between the above results and rank-metric codes in the coding theory literature. In fact, we are also strongly motivated by understanding when minimum rank distance decoding of random rank-metric codes succeeds. To this end, we derive distance properties of equiprobable and sparse rank-metric codes. These distance properties provide a precise geometric interpretation of the fact that the sparse ensemble requires as few measurements as the dense one. Finally, we provide a non-exhaustive procedure to search for the unknown low-rank matrix.Comment: Accepted to the IEEE Transactions on Information Theory; Presented at IEEE International Symposium on Information Theory (ISIT) 201
    corecore