23,342 research outputs found

    Computing with Coloured Tangles

    Full text link
    We suggest a diagrammatic model of computation based on an axiom of distributivity. A diagram of a decorated coloured tangle, similar to those that appear in low dimensional topology, plays the role of a circuit diagram. Equivalent diagrams represent bisimilar computations. We prove that our model of computation is Turing complete, and that with bounded resources it can moreover decide any language in complexity class IP, sometimes with better performance parameters than corresponding classical protocols.Comment: 36 pages,; Introduction entirely rewritten, Section 4.3 adde

    Quantum Kolmogorov Complexity Based on Classical Descriptions

    Get PDF
    We develop a theory of the algorithmic information in bits contained in an individual pure quantum state. This extends classical Kolmogorov complexity to the quantum domain retaining classical descriptions. Quantum Kolmogorov complexity coincides with the classical Kolmogorov complexity on the classical domain. Quantum Kolmogorov complexity is upper bounded and can be effectively approximated from above under certain conditions. With high probability a quantum object is incompressible. Upper- and lower bounds of the quantum complexity of multiple copies of individual pure quantum states are derived and may shed some light on the no-cloning properties of quantum states. In the quantum situation complexity is not sub-additive. We discuss some relations with ``no-cloning'' and ``approximate cloning'' properties.Comment: 17 pages, LaTeX, final and extended version of quant-ph/9907035, with corrections to the published journal version (the two displayed equations in the right-hand column on page 2466 had the left-hand sides of the displayed formulas erroneously interchanged

    Zeno machines and hypercomputation

    Get PDF
    This paper reviews the Church-Turing Thesis (or rather, theses) with reference to their origin and application and considers some models of "hypercomputation", concentrating on perhaps the most straight-forward option: Zeno machines (Turing machines with accelerating clock). The halting problem is briefly discussed in a general context and the suggestion that it is an inevitable companion of any reasonable computational model is emphasised. It is hinted that claims to have "broken the Turing barrier" could be toned down and that the important and well-founded role of Turing computability in the mathematical sciences stands unchallenged.Comment: 11 pages. First submitted in December 2004, substantially revised in July and in November 2005. To appear in Theoretical Computer Scienc

    Satisfiability is quasilinear complete in NQL

    Get PDF
    Considered are the classes QL (quasilinear) and NQL (nondet quasllmear) of all those problems that can be solved by deterministic (nondetermlnlsttc, respectively) Turmg machines in time O(n(log n) ~) for some k Effloent algorithms have time bounds of th~s type, it is argued. Many of the "exhausUve search" type problems such as satlsflablhty and colorabdlty are complete in NQL with respect to reductions that take O(n(log n) k) steps This lmphes that QL = NQL iff satisfiabdlty is m QL CR CATEGORIES: 5.2
    corecore