12,919 research outputs found

    From Random Matrix Theory to Coding Theory : Volume of a Metric Ball in Unitary Group

    Get PDF
    Volume estimates of metric balls in manifolds find diverse applications in information and coding theory. In this paper, new results for the volume of a metric ball in unitary group are derived via tools from random matrix theory. The first result is an integral representation of the exact volume, which involves a Toeplitz determinant of Bessel functions. A simple but accurate limiting volume formula is then obtained by invoking Szego's strong limit theorem for large Toeplitz matrices. The derived asymptotic volume formula enables analytical evaluation of some coding-theoretic bounds of unitary codes. In particular, the Gilbert-Varshamov lower bound and the Hamming upper bound on the cardinality as well as the resulting bounds on code rate and minimum distance are derived. Moreover, bounds on the scaling law of code rate are found. Finally, a closed-form bound on the diversity sum relevant to unitary space-time codes is obtained, which was only computed numerically in the literature.Peer reviewe

    Density of Spherically-Embedded Stiefel and Grassmann Codes

    Full text link
    The density of a code is the fraction of the coding space covered by packing balls centered around the codewords. This paper investigates the density of codes in the complex Stiefel and Grassmann manifolds equipped with the chordal distance. The choice of distance enables the treatment of the manifolds as subspaces of Euclidean hyperspheres. In this geometry, the densest packings are not necessarily equivalent to maximum-minimum-distance codes. Computing a code's density follows from computing: i) the normalized volume of a metric ball and ii) the kissing radius, the radius of the largest balls one can pack around the codewords without overlapping. First, the normalized volume of a metric ball is evaluated by asymptotic approximations. The volume of a small ball can be well-approximated by the volume of a locally-equivalent tangential ball. In order to properly normalize this approximation, the precise volumes of the manifolds induced by their spherical embedding are computed. For larger balls, a hyperspherical cap approximation is used, which is justified by a volume comparison theorem showing that the normalized volume of a ball in the Stiefel or Grassmann manifold is asymptotically equal to the normalized volume of a ball in its embedding sphere as the dimension grows to infinity. Then, bounds on the kissing radius are derived alongside corresponding bounds on the density. Unlike spherical codes or codes in flat spaces, the kissing radius of Grassmann or Stiefel codes cannot be exactly determined from its minimum distance. It is nonetheless possible to derive bounds on density as functions of the minimum distance. Stiefel and Grassmann codes have larger density than their image spherical codes when dimensions tend to infinity. Finally, the bounds on density lead to refinements of the standard Hamming bounds for Stiefel and Grassmann codes.Comment: Two-column version (24 pages, 6 figures, 4 tables). To appear in IEEE Transactions on Information Theor

    Hilbert--Schmidt volume of the set of mixed quantum states

    Get PDF
    We compute the volume of the convex N^2-1 dimensional set M_N of density matrices of size N with respect to the Hilbert-Schmidt measure. The hyper--area of the boundary of this set is also found and its ratio to the volume provides an information about the complex structure of M_N. Similar investigations are also performed for the smaller set of all real density matrices. As an intermediate step we analyze volumes of the unitary and orthogonal groups and of the flag manifolds.Comment: 13 revtex pages, ver 3: minor improvement

    Convex bodies of states and maps

    Full text link
    We give a general solution to the question when the convex hulls of orbits of quantum states on a finite-dimensional Hilbert space under unitary actions of a compact group have a non-empty interior in the surrounding space of all density states. The same approach can be applied to study convex combinations of quantum channels. The importance of both problems stems from the fact that, usually, only sets with non-vanishing volumes in the embedding spaces of all states or channels are of practical importance. For the group of local transformations on a bipartite system we characterize maximally entangled states by properties of a convex hull of orbits through them. We also compare two partial characteristics of convex bodies in terms of largest balls and maximum volume ellipsoids contained in them and show that, in general, they do not coincide. Separable states, mixed-unitary channels and k-entangled states are also considered as examples of our techniques.Comment: 18 pages, 1 figur

    Metric Entropy of Homogeneous Spaces

    Full text link
    For a (compact) subset KK of a metric space and ε>0\varepsilon > 0, the {\em covering number} N(K,ε)N(K , \varepsilon ) is defined as the smallest number of balls of radius ε\varepsilon whose union covers KK. Knowledge of the {\em metric entropy}, i.e., the asymptotic behaviour of covering numbers for (families of) metric spaces is important in many areas of mathematics (geometry, functional analysis, probability, coding theory, to name a few). In this paper we give asymptotically correct estimates for covering numbers for a large class of homogeneous spaces of unitary (or orthogonal) groups with respect to some natural metrics, most notably the one induced by the operator norm. This generalizes earlier author's results concerning covering numbers of Grassmann manifolds; the generalization is motivated by applications to noncommutative probability and operator algebras. In the process we give a characterization of geodesics in U(n)U(n) (or SO(m)SO(m)) for a class of non-Riemannian metric structures
    corecore