38,263 research outputs found

    Inference on Counterfactual Distributions

    Get PDF
    Counterfactual distributions are important ingredients for policy analysis and decomposition analysis in empirical economics. In this article we develop modeling and inference tools for counterfactual distributions based on regression methods. The counterfactual scenarios that we consider consist of ceteris paribus changes in either the distribution of covariates related to the outcome of interest or the conditional distribution of the outcome given covariates. For either of these scenarios we derive joint functional central limit theorems and bootstrap validity results for regression-based estimators of the status quo and counterfactual outcome distributions. These results allow us to construct simultaneous confidence sets for function-valued effects of the counterfactual changes, including the effects on the entire distribution and quantile functions of the outcome as well as on related functionals. These confidence sets can be used to test functional hypotheses such as no-effect, positive effect, or stochastic dominance. Our theory applies to general counterfactual changes and covers the main regression methods including classical, quantile, duration, and distribution regressions. We illustrate the results with an empirical application to wage decompositions using data for the United States. As a part of developing the main results, we introduce distribution regression as a comprehensive and flexible tool for modeling and estimating the \textit{entire} conditional distribution. We show that distribution regression encompasses the Cox duration regression and represents a useful alternative to quantile regression. We establish functional central limit theorems and bootstrap validity results for the empirical distribution regression process and various related functionals.Comment: 55 pages, 1 table, 3 figures, supplementary appendix with additional results available from the authors' web site

    Quantile and Probability Curves Without Crossing

    Get PDF
    This paper proposes a method to address the longstanding problem of lack of monotonicity in estimation of conditional and structural quantile functions, also known as the quantile crossing problem. The method consists in sorting or monotone rearranging the original estimated non-monotone curve into a monotone rearranged curve. We show that the rearranged curve is closer to the true quantile curve in finite samples than the original curve, establish a functional delta method for rearrangement-related operators, and derive functional limit theory for the entire rearranged curve and its functionals. We also establish validity of the bootstrap for estimating the limit law of the the entire rearranged curve and its functionals. Our limit results are generic in that they apply to every estimator of a monotone econometric function, provided that the estimator satisfies a functional central limit theorem and the function satisfies some smoothness conditions. Consequently, our results apply to estimation of other econometric functions with monotonicity restrictions, such as demand, production, distribution, and structural distribution functions. We illustrate the results with an application to estimation of structural quantile functions using data on Vietnam veteran status and earnings.Comment: 29 pages, 4 figure

    Program Evaluation and Causal Inference with High-Dimensional Data

    Full text link
    In this paper, we provide efficient estimators and honest confidence bands for a variety of treatment effects including local average (LATE) and local quantile treatment effects (LQTE) in data-rich environments. We can handle very many control variables, endogenous receipt of treatment, heterogeneous treatment effects, and function-valued outcomes. Our framework covers the special case of exogenous receipt of treatment, either conditional on controls or unconditionally as in randomized control trials. In the latter case, our approach produces efficient estimators and honest bands for (functional) average treatment effects (ATE) and quantile treatment effects (QTE). To make informative inference possible, we assume that key reduced form predictive relationships are approximately sparse. This assumption allows the use of regularization and selection methods to estimate those relations, and we provide methods for post-regularization and post-selection inference that are uniformly valid (honest) across a wide-range of models. We show that a key ingredient enabling honest inference is the use of orthogonal or doubly robust moment conditions in estimating certain reduced form functional parameters. We illustrate the use of the proposed methods with an application to estimating the effect of 401(k) eligibility and participation on accumulated assets.Comment: 118 pages, 3 tables, 11 figures, includes supplementary appendix. This version corrects some typos in Example 2 of the published versio

    Multiplier bootstrap of tail copulas with applications

    Full text link
    For the problem of estimating lower tail and upper tail copulas, we propose two bootstrap procedures for approximating the distribution of the corresponding empirical tail copulas. The first method uses a multiplier bootstrap of the empirical tail copula process and requires estimation of the partial derivatives of the tail copula. The second method avoids this estimation problem and uses multipliers in the two-dimensional empirical distribution function and in the estimates of the marginal distributions. For both multiplier bootstrap procedures, we prove consistency. For these investigations, we demonstrate that the common assumption of the existence of continuous partial derivatives in the the literature on tail copula estimation is so restrictive, such that the tail copula corresponding to tail independence is the only tail copula with this property. Moreover, we are able to solve this problem and prove weak convergence of the empirical tail copula process under nonrestrictive smoothness assumptions that are satisfied for many commonly used models. These results are applied in several statistical problems, including minimum distance estimation and goodness-of-fit testing.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ425 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Optimal Sup-norm Rates and Uniform Inference on Nonlinear Functionals of Nonparametric IV Regression

    Full text link
    This paper makes several important contributions to the literature about nonparametric instrumental variables (NPIV) estimation and inference on a structural function h0h_0 and its functionals. First, we derive sup-norm convergence rates for computationally simple sieve NPIV (series 2SLS) estimators of h0h_0 and its derivatives. Second, we derive a lower bound that describes the best possible (minimax) sup-norm rates of estimating h0h_0 and its derivatives, and show that the sieve NPIV estimator can attain the minimax rates when h0h_0 is approximated via a spline or wavelet sieve. Our optimal sup-norm rates surprisingly coincide with the optimal root-mean-squared rates for severely ill-posed problems, and are only a logarithmic factor slower than the optimal root-mean-squared rates for mildly ill-posed problems. Third, we use our sup-norm rates to establish the uniform Gaussian process strong approximations and the score bootstrap uniform confidence bands (UCBs) for collections of nonlinear functionals of h0h_0 under primitive conditions, allowing for mildly and severely ill-posed problems. Fourth, as applications, we obtain the first asymptotic pointwise and uniform inference results for plug-in sieve t-statistics of exact consumer surplus (CS) and deadweight loss (DL) welfare functionals under low-level conditions when demand is estimated via sieve NPIV. Empiricists could read our real data application of UCBs for exact CS and DL functionals of gasoline demand that reveals interesting patterns and is applicable to other markets.Comment: This paper is a major extension of Sections 2 and 3 of our Cowles Foundation Discussion Paper CFDP1923, Cemmap Working Paper CWP56/13 and arXiv preprint arXiv:1311.0412 [math.ST]. Section 3 of the previous version of this paper (dealing with data-driven choice of sieve dimension) is currently being revised as a separate pape
    • …
    corecore