1,151 research outputs found

    Design and Control of Compliant Actuation Topologies for Energy-Efficient Articulated Robots

    Get PDF
    Considerable advances have been made in the field of robotic actuation in recent years. At the heart of this has been increased use of compliance. Arguably the most common approach is that of Series-Elastic Actuation (SEA), and SEAs have evolved to become the core component of many articulated robots. Another approach is integration of compliance in parallel to the main actuation, referred to as Parallel- Elastic Actuation (PEA). A wide variety of such systems has been proposed. While both approaches have demonstrated significant potential benefits, a number of key challenges remain with regards to the design and control of such actuators. This thesis addresses some of the challenges that exist in design and control of compliant actuation systems. First, it investigates the design, dynamics, and control of SEAs as the core components of next-generation robots. We consider the influence of selected physical stiffness on torque controllability and backdrivability, and propose an optimality criterion for impedance rendering. Furthermore, we consider disturbance observers for robust torque control. Simulation studies and experimental data validate the analyses. Secondly, this work investigates augmentation of articulated robots with adjustable parallel compliance and multi-articulated actuation for increased energy efficiency. Particularly, design optimisation of parallel compliance topologies with adjustable pretension is proposed, including multi-articulated arrangements. Novel control strategies are developed for such systems. To validate the proposed concepts, novel hardware is designed, simulation studies are performed, and experimental data of two platforms are provided, that show the benefits over state-of-the-art SEA-only based actuatio

    Passive compensation of nonlinear robot dynamics

    Get PDF
    In this paper, we derive a coordinate-free formulation of a passive controller that makes a mechanical system track reference curves in a potential field. Contrary to conventional reference tracking, we do not specify a single time-varying trajectory that the system has to track. Instead, we specify a whole curve that the system has to stay on at all times. Using tools from differential geometry, we first derive a controller that makes the system move along arbitrary (smooth enough) reference curves while keeping the kinetic energy constant. We then apply the results to the case of movement in an artificial potential field, in which case, the reference curves are completely determined by the potential field and cannot be chosen arbitrarily. Simulation then shows the performance of the controller on a benchmark robot with two degrees of freedom

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Motion Control

    Get PDF

    Advanced Nonlinear Control of Robot Manipulators

    Get PDF

    On Sensorless Collision Detection and Measurement of External Forces in Presence of Modeling Inaccuracies

    Get PDF
    The field of human-robot interaction has garnered significant interest in the last decade. Every form of human-robot coexistence must guarantee the safety of the user. Safety in human-robot interaction is being vigorously studied, in areas such as collision avoidance, soft actuators, light-weight robots, computer vision techniques, soft tissue modeling, collision detection, etc. Despite the safety provisions, unwanted collisions can occur in case of system faults. In such cases, before post-collision strategies are triggered, it is imperative to effectively detect the collisions. Implementation of tactile sensors, vision systems, sonar and Lidar sensors, etc., allows for detection of collisions. However, due to the cost of such methods, more practical approaches are being investigated. A general goal remains to develop methods for fast detection of external contacts using minimal sensory information. Availability of position data and command torques in manipulators permits development of observer-based techniques to measure external forces/torques. The presence of disturbances and inaccuracies in the model of the robot presents challenges in the efficacy of observers in the context of collision detection. The purpose of this thesis is to develop methods that reduce the effects of modeling inaccuracies in external force/torque estimation and increase the efficacy of collision detection. It is comprised of the following four parts: 1. The KUKA Light-Weight Robot IV+ is commonly employed for research purposes. The regressor matrix, minimal inertial parameters and the friction model of this robot are identified and presented in detail. To develop the model, relative weight analysis is employed for identification. 2. Modeling inaccuracies and robot state approximation errors are considered simultaneously to develop model-based time-varying thresholds for collision detection. A metric is formulated to compare trajectories realizing the same task in terms of their collision detection and external force/torque estimation capabilities. A method for determining optimal trajectories with regards to accurate external force/torque estimation is also developed. 3. The effects of velocity on external force/torque estimation errors are studied with and without the use of joint force/torque sensors. Velocity-based thresholds are developed and implemented to improve collision detection. The results are compared with the collision detection module integrated in the KUKA Light-Weight Robot IV+. 4. An alternative joint-by-joint heuristic method is proposed to identify the effects of modeling inaccuracies on external force/torque estimation. Time-varying collision detection thresholds associated with the heuristic method are developed and compared with constant thresholds. In this work, the KUKA Light-Weight Robot IV+ is used for obtaining the experimental results. This robot is controlled via the Fast Research Interface and Visual C++ 2008. The experimental results confirm the efficacy of the proposed methodologies

    Enhanced Motion Control Concepts on Parallel Robots

    Get PDF
    • …
    corecore