2,380 research outputs found

    Dominating sequences in grid-like and toroidal graphs

    Get PDF
    A longest sequence SS of distinct vertices of a graph GG such that each vertex of SS dominates some vertex that is not dominated by its preceding vertices, is called a Grundy dominating sequence; the length of SS is the Grundy domination number of GG. In this paper we study the Grundy domination number in the four standard graph products: the Cartesian, the lexicographic, the direct, and the strong product. For each of the products we present a lower bound for the Grundy domination number which turns out to be exact for the lexicographic product and is conjectured to be exact for the strong product. In most of the cases exact Grundy domination numbers are determined for products of paths and/or cycles.Comment: 17 pages 3 figure

    Perfect domination in regular grid graphs

    Full text link
    We show there is an uncountable number of parallel total perfect codes in the integer lattice graph Λ{\Lambda} of R2\R^2. In contrast, there is just one 1-perfect code in Λ{\Lambda} and one total perfect code in Λ{\Lambda} restricting to total perfect codes of rectangular grid graphs (yielding an asymmetric, Penrose, tiling of the plane). We characterize all cycle products Cm×CnC_m\times C_n with parallel total perfect codes, and the dd-perfect and total perfect code partitions of Λ{\Lambda} and Cm×CnC_m\times C_n, the former having as quotient graph the undirected Cayley graphs of Z2d2+2d+1\Z_{2d^2+2d+1} with generator set {1,2d2}\{1,2d^2\}. For r>1r>1, generalization for 1-perfect codes is provided in the integer lattice of Rr\R^r and in the products of rr cycles, with partition quotient graph K2r+1K_{2r+1} taken as the undirected Cayley graph of Z2r+1\Z_{2r+1} with generator set {1,...,r}\{1,...,r\}.Comment: 16 pages; 11 figures; accepted for publication in Austral. J. Combi
    • …
    corecore