6 research outputs found

    On the Shuffle Automaton Size for Words

    Full text link
    We investigate the state size of DFAs accepting the shuffle of two words. We provide words u and v, such that the minimal DFA for u shuffled with v requires an exponential number of states. We also show some conditions for the words u and v which ensure a quadratic upper bound on the state size of u shuffled with v. Moreover, switching only two letters within one of u or v is enough to trigger the change from quadratic to exponential

    Algorithmic Decomposition of Shuffle on Words

    Get PDF
    We investigate shuffle-decomposability into two words. We give an algorithm which takes as input a DFA M (under certain conditions) and determines the unique candidate decomposition into words u and v such that L(M) = u v ifM is shuffle decomposable, in time O(|u| + |v|). Even though this algorithm does not determine whether or not the DFA is shuffle decomposable, the sublinear time complexity of only determining the two words under the assumption of decomposability is surprising given the complexity of shuffle, and demonstrates an interesting property of the operation. We also show that for given words u and v and a DFA M we can determine whether u v ⊆ L(M) in polynomial time

    A Novel Algorithm for the Conversion of Parallel Regular Expressions to Non-deterministic Finite Automata

    Full text link

    Decomposition and Descriptional Complexity of Shuffle on Words and Finite Languages

    Get PDF
    We investigate various questions related to the shuffle operation on words and finite languages. First we investigate a special variant of the shuffle decomposition problem for regular languages, namely, when the given regular language is the shuffle of finite languages. The shuffle decomposition into finite languages is, in general not unique. Thatis,therearelanguagesL^,L2,L3,L4withLiluL2= £3luT4but{L\,L2}^ {I/3, L4}. However, if all four languages are singletons (with at least two combined letters), it follows by a result of Berstel and Boasson [6], that the solution is unique; that is {L\,L2} = {L3,L4}. We extend this result to show that if L\ and L2 are arbitrary finite sets and Lz and Z-4 are singletons (with at least two letters in each), the solution is unique. This is as strong as it can be, since we provide examples showing that the solution can be non-unique already when (1) both L\ and L2 are singleton sets over different unary alphabets; or (2) L\ contains two words and L2 is singleton. We furthermore investigate the size of shuffle automata for words. It was shown by Campeanu, K. Salomaa and Yu in [11] that the minimal shuffle automaton of two regular languages requires 2mn states in the worst case (where the minimal automata of the two component languages had m and n states, respectively). It was also recently shown that there exist words u and v such that the minimal shuffle iii DFA for u and v requires an exponential number of states. We study the size of shuffle DFAs for restricted cases of words, namely when the words u and v are both periods of a common underlying word. We show that, when the underlying word obeys certain conditions, then the size of the minimal shuffle DFA for u and v is at most quadratic. Moreover we provide an efficient algorithm, which decides for a given DFA A and two words u and v, whether u lu u C L(A)
    corecore