
Western University Western University

Scholarship@Western Scholarship@Western

Brain and Mind Institute Researchers'
Publications Brain and Mind Institute

10-5-2012

Algorithmic Decomposition of Shuffle on Words Algorithmic Decomposition of Shuffle on Words

Franziska Biegler
Department of Software Engineering and Theoretical Computer Science, Berlin Institute of Technology,
Germany

Mark Daley
Departments of Computer Science and Biology, University of Western Ontario, London, ON N6A 5B7,
Canada

Ian McQuillan
Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada

Follow this and additional works at: https://ir.lib.uwo.ca/brainpub

 Part of the Neurosciences Commons, and the Psychology Commons

Citation of this paper: Citation of this paper:
Biegler, Franziska; Daley, Mark; and McQuillan, Ian, "Algorithmic Decomposition of Shuffle on Words"
(2012). Brain and Mind Institute Researchers' Publications. 144.
https://ir.lib.uwo.ca/brainpub/144

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/289079678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/brainpub
https://ir.lib.uwo.ca/brainpub
https://ir.lib.uwo.ca/brain
https://ir.lib.uwo.ca/brainpub?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1010?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/404?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/brainpub/144?utm_source=ir.lib.uwo.ca%2Fbrainpub%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages

Theoretical Computer Science 454 (2012) 38–50

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Algorithmic decomposition of shuffle on words
Franziska Biegler a, Mark Daley b,∗, Ian McQuillan c

a Department of Software Engineering and Theoretical Computer Science, Berlin Institute of Technology, Germany
b Departments of Computer Science and Biology, University of Western Ontario, London, ON N6A 5B7, Canada
c Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada

a r t i c l e i n f o

Keywords:
Shuffle decomposition
Finite languages
Finite automata
Words

a b s t r a c t

We investigate shuffle-decomposability into two words. We give an algorithm which
takes as input a DFA M (under certain conditions) and determines the unique candidate
decomposition into words u and v such that L(M) = u v ifM is shuffle decomposable, in
time O(|u| + |v|). Even though this algorithm does not determine whether or not the DFA
is shuffle decomposable, the sublinear time complexity of only determining the twowords
under the assumption of decomposability is surprising given the complexity of shuffle, and
demonstrates an interesting property of the operation.

We also show that for given words u and v and a DFA M we can determine whether
u v ⊆ L(M) in polynomial time.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The shuffle decomposition problem has been a long standing open problem in formal language theory. The problem is
defined as follows: Given a regular language L, do there exist two non-trivial (neither is the singleton language consisting
of the empty word) languages L1 and L2, such that L = L1 L2, where denotes the shuffle operation on languages?
Although the decidability status of this problem remains open, it is decidable if the given language is a commutative regular
language or a locally testable language [1], or if there is a decomposition into a regular language and certain classes of finite
languages [2].

Lately, attention has been paid to gaining a deeper understanding of a special case: the shuffle of individual words. In
[3], it was proven that shuffle decomposition on words is unique as long as there are two letters used within the words. In
the case of binary shuffle (which we will restrict ourselves to in this paper), this can be formally stated as u v = u′ v′

implies {u, v} = {u′, v′
} (where there are two combined letters used). The proof in [3] also gives rise to an algorithm that

can be used to compute a candidate shuffle root for a given set of words, but the complexity of this algorithm is not further
discussed. In [4], the result from [3] was extended to show that if two words u and v both contain at least two letters, then
the shuffle decomposition is the unique decomposition over arbitrary sets and not just words. That is, u v = L1 L2
implies {{u}, {v}} = {L1, L2}. Lastly, the authors have recently shown [5] that the size of minimal deterministic finite shuffle
automata for two words can grow exponentially, Ω(

8√2
n
) ≈ Ω(1.09n), as a function of words of length n. This extended

the result in [6] that the size of the shuffle automaton for two regular languages accepted bym- and n-state automata is 2mn

in the worst case (using infinite languages).
In Section 3 of this paper, we present an efficient algorithm which takes as input a trim, acyclic non-unary DFA. If the

accepted language satisfies the assumption to be shuffle decomposable into two words, then we are able to determine the
two words u and v in time O(|u| + |v|). This efficiency is perhaps surprising since shuffle decomposition seems to be an

∗ Corresponding author. Tel.: +1 519 661 3566; fax: +1 519 661 3515.
E-mail addresses: franziska.biegler@tu-berlin.de (F. Biegler), daley@csd.uwo.ca (M. Daley), mcquillan@cs.usask.ca (I. McQuillan).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.04.001

http://dx.doi.org/10.1016/j.tcs.2012.04.001
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:franziska.biegler@tu-berlin.de
mailto:daley@csd.uwo.ca
mailto:mcquillan@cs.usask.ca
http://dx.doi.org/10.1016/j.tcs.2012.04.001

F. Biegler et al. / Theoretical Computer Science 454 (2012) 38–50 39

extremely difficult problem and given that there can be an exponential number of states in the automaton relative to the
lengths. Thus, only a small number of states of the DFA need to be examined to determine u and v. We present an example
of an application of this algorithm on a specific automaton in Section 4. Our algorithm only computes a candidate solution
or rejects a subset of automata that do not accept the shuffle of two words for obvious reasons. Thus, the complexity of
deciding whether the language accepted by a given DFA is shuffle decomposable into two words is still open, however our
algorithm is a key step towards a solution. It also demonstrates an interesting property, as the two strings are encoded in
a relatively small part of a shuffle decomposable DFA. In Section 5, we furthermore show that it is decidable in polynomial
time, for an acyclic DFAM and two words u, v, whether u v ⊆ L(M).

2. Definitions

We require somemathematical preliminaries and custom definitions to discuss the results of this paper. Let N be the set
of positive integers. An alphabet Σ is a finite, non-empty set of symbols. The set of all words over Σ is denoted by Σ∗, and
this set contains the empty word, λ. The set of all non-empty words over Σ is denoted by Σ+.

Let Σ be an alphabet and let u, v ∈ Σ∗. If u = aα1
1 aα2

2 · · · aαn
n where we have a1, . . . , an ∈ Σ , α1, . . . , αn ∈ N and ai ≠

ai+1, for 1 ≤ i < n, then the skeleton of u is defined as χ(u) = a1a2 · · · an. The different occurrences of the same letter a in
the skeleton of u are called the a-sections of u. Let u, v ∈ Σ∗. The shuffle of u and v is defined as u v = {u1v1 · · · unvn |

u = u1 · · · un, v = v1 · · · vn, ui ∈ Σ∗, vi ∈ Σ∗, 1 ≤ i ≤ n}. We say u is a prefix of v, written u ≤p v, if v = ux, for some
x ∈ Σ∗. Also, (u)−1v = w if v = uw and is undefined otherwise.

A deterministic finite automaton (DFA) M = (Q , Σ, q0, F , δ) is accessible if, for each state q ∈ Q , there exists a word
u ∈ Σ∗ such that δ(q0, u) = q.M is co-accessible if, for each state q ∈ Q , there exists a word u ∈ Σ∗ such that δ(q, u) ∈ F .M
is trim if it is both accessible and co-accessible. Each DFA can be converted into an equivalent trim DFA. For each q ∈ Q , we
define LM(q) = L(M ′), where M ′

= (Q , Σ, q0, {q}, δ). We say M is acyclic if q /∈ δ(q, w) for every q ∈ Q and w ∈ Σ+. The
depth of an acyclic DFA is the longest path from a start state to a final state. We say that a language L is shuffle decomposable
if L = u v for some u, v ∈ Σ+, and we say that an automatonM is shuffle decomposable if L(M) is shuffle decomposable.
See [7] for details on finite automata.

3. Algorithms for shuffle decomposition

The purpose of this section is to provide an algorithm which takes as input a trim, acyclic non-unary DFA M and
determines strings u, v such that M being shuffle decomposable implies L(M) = u v is the unique decomposition. For
some automata, the algorithm can determine that M is not shuffle decomposable. However, for some other automata, the
algorithm will still output two strings even thoughM is not decomposable. We know from [3] that there exists at most one
solution over words when at least two letters are used in the words (this is not true when both words are over the same one
letter alphabet). This problem is obviously solvable by an exponential algorithm. However, we provide an algorithm which
operates in time O(|u| + |v|). This is usually less than the number of states in the automaton. It could also be classified as
O(|Q |), where Q is the state set of the input DFA.

We are only concerned with non-unary DFAs, because decomposition into unary DFAs is not unique, and also being
decomposable implies L(M) = {an}, for some n, which is testable in linear time, O(n).

Some notation for this section is now defined. Let M = (Q , Σ, q0, F , δ) be a DFA, q ∈ Q and a ∈ Σ . We define δ(q) =

{a ∈ Σ | δ(q, a) ≠ ∅},

δmax(q, λ) = 0,

δmax(q, a) = n, where δ(q, an) ≠ ∅, δ(q, an+1) = ∅,

δmin(q, a) = n, where n is minimal such that either
δ(q, anb) ≠ ∅ for some b ≠ a, or δ(q, an) ∈ F .

For the rest of this section, let M = (Q , Σ, q0, F , δ) be a trim acyclic, non-unary DFA. Since M is not unary, if L(M) is
shuffle decomposable, then there exists A unique u, v such that L(M) = u v (from [3]). Then, for the rest of this section,
we assume thatM is shuffle decomposable, and we will effectively determine u and v. Also, if L(M) is shuffle decomposable
then some word, must contain at least two letters since an ∈ u v implies L(M) only contains one letter, and thusM must
be unary since it is trim. Hence, every word in L(M) contains at least two letters.

We need another definition which will be used in the proof of Lemma 3. For w ∈ Σ∗ and q ∈ Q , we let

w(q)
=


w if w = λ or w = w′a, a ∈ Σ, a /∈ δ(q),
w′ where w = w′ai, i > 0 maximal, if δ(q, ai) defined,
undefined otherwise.

Essentially w(q) allows to remove the last section of a’s from w depending on the current state. This is used in order to
determine which of the next letters to be read inM comes from u and which comes from v.

40 F. Biegler et al. / Theoretical Computer Science 454 (2012) 38–50

We say that x1 · · · xk, xi ∈ Σ has a unique (u, v)-decomposition if L(M) = u v implies that there exists unique
ū ≤p u, v̄ ≤p v such that x1 · · · xk ∈ ū v̄. In such a case, we say that (ū, v̄) is the unique (u, v)-decomposition of x1 · · · xk.
We say that it is the unique decomposition if (u, v) is obvious from the context.

Lemma 1. If L(M) = u v, L(M) has at least two letters, x1 · · · xk, xi ∈ Σ has a unique (u, v)-decomposition and δ(q0,
x1 · · · xk) = q, then |δ(q)| ≤ 2.

Proof. Let (ū, v̄) be the unique (u, v)-decomposition. Assume that there exists c, d, e ∈ Σ , pairwise distinct, such that
δ(q, c), δ(q, d) and δ(q, e) are all defined. But since (ū, v̄) is unique, each of c, d, e must appear at position |ū| + 1 of u or
|v̄| + 1 of v, a contradiction. �

The entire algorithm consists of four functions together with a main procedure. We first give two simple standalone
functions before describing the full algorithm. The first function is calledmaxShuf. Essentially, it creates a word in z ∈ s t
for s, t ∈ Σ∗ by looping through each section in the skeleton of s, and if the letter in that section is the same as the current
letter in t , then it merges both sections.

maxShuf(s, t) WTF
let s = aα1

1 · · · aαn
n ; t = bβ1

1 · · · bβm
m ;1

z := λ; k := 1; l := 1;2
while (k ≤ n or l ≤ m)3

if (k ≤ n, l ≤ m and ak = bl)4
z = z · aαk

k bβl
l ; k := k + 1; l := l + 1;5

else if (k ≤ n) z = z · aαk
k ; k := k + 1;6

else z := z · bβl
l ; l := l + 1;7

return z;8

The following small example should help to illustratemaxShuf, and it also shows thatmaxShuf is not commutative.

Example 2. Let s = a4b3a2c2 and t = b4ac5. ThenmaxShuf(s, t) = a4b7a3c7 and maxShuf(t, s) = b4a5c5b3a2c2.

The second function, findUnique(q), for some state q, is used only in situations where M being shuffle decomposable
implies that there is only one sequence of states from q to a final state (we will show that this holds when we use the
function), and it returns the unique string z such that δ(q, z) ∈ F . If there is no unique sequence of states from q to a final
state, thenM cannot be shuffle decomposable and findUnique prints ‘‘Not decomposable’’ and halts the algorithm.

findUnique(q) WTF
let q′

:= q; z := λ;1
while (q′ /∈ F)2

if (|δ(q′)| ≥ 2 or |δ(q′)| = 0)3
print (‘‘Not decomposable’’);4

else let a ∈ δ(q′); z := z · a; q′
:= δ(q′, a);5

return z;6

Weare now ready to describe the full algorithm, consisting of amain procedure and two additional functions. Throughout
the algorithm, we use variables ū, v̄, w, q, f and g . The variables ū, v̄ represent prefixes of u and v respectively that we have
determined so far. The variablew represents a prefix of some word in u v such that w ∈ ū v̄. The state qwill always be
δ(q0, w) as we will always concatenate letters to w simultaneously as we change state q by using transitions via the same
sequence. The variables f and g are in Σ ∪ {λ}. At most one of these at any given time will be in Σ and the other will be λ.
Throughout the proof, if we informally say some string y must be read from u (or v), this means that (ūy, v̄) is the unique
decomposition of wy.

For the proof of correctness, we continue to assume that L(M) = u v (if this is false, then either it will output ‘‘Not
decomposable’’, or two words u and v, but L(M) is not shuffle decomposable). At the start of the procedure, and each time
we evaluate the loop condition of the procedure (line 5 below), we verify that the following three conditions are true, which
we call the inductive conditions, and which we refer to throughout the proof of correctness:

1. f ∈ Σ (and g = λ) implies that (ūf , v̄) is the unique (u, v)-decomposition of wf and (ū(q), v̄) is the unique (u, v)-
decomposition of w(q) and |δ(q)| = 2,

2. g ∈ Σ (and f = λ) implies that (ū, v̄g) is the unique (u, v)-decomposition of wg and (ū, v̄(q)) is the unique (u, v)-
decomposition of w(q) and |δ(q)| = 2,

3. f = g = λ implies that (ū, v̄) is the unique (u, v)-decomposition of w and either q ∈ F or q = q0.

Then, each time through the loop as we concatenate letters to ū, v̄ and w, either (ū, v̄), (ūf , v̄) or (ū, v̄g) is a unique
decomposition. We use the variable x in the procedure to group together f , g, q, w, ū, v̄, which is passed and returned from
the functions and as we update any of the variables discussed in the previous paragraph, it is assumed to change x also.

F. Biegler et al. / Theoretical Computer Science 454 (2012) 38–50 41

a

c

b

Fig. 1. Pictured above are schematic drawings for (a) Case 1, (b) Case 2 and (c) Case 3 of firstDiff. Having u or v in parentheses indicates that that letter
must come from u or v. The symbols used in the diagram are described in firstDiff and in Lemma 3. Also, a dashed line represents an optional transition.

We will now describe the main algorithm, which uses two additional functions to be described below:

Procedure. WTF
x := (f , g, q, w, ū, v̄) where1

f := λ; g := λ; q := q0; w := λ; ū := λ; v̄ := λ;2
if (|δ(q)| = 1) x := firstDiff(x);3
else set f to be one of the letters in δ(q);4
while (|δ(q)| = 2 and either f ≠ λ or g ≠ λ)5

x := firstDiff(x);6
if (|δ(q)| = 0) then print (‘‘Candidate Solution: {ū, v̄}’’);7
else print (‘‘Not a shuffle automaton’’); �8

As indicated above, at the beginning of the procedure, and each time we evaluate the loop condition (line 5), at most one
of f ≠ λ or g ≠ λ. Moreover, f = g = λ will occur if and only if either ū = v̄ = w = λ (at the beginning of the procedure)
or q ∈ F (at the end of the procedure). Also, we already know q ∈ F if and only if |δ(q)| = 0 since M is co-accessible and all
words are of the same length in u v, in shuffle decomposable DFAs. Otherwise, exactly one of f ∈ Σ or g ∈ Σ . We will
show that the inductive conditions are always true by induction.

For the base case, we see that at the beginning of the procedure, w = λ, f = λ and g = λ and indeed, (ū, v̄) = (λ, λ) is
the unique decomposition of w = λ here. Thus assume by way of induction, that after the kth visit to either the start of the
procedure or the loop condition on line 5, the inductive conditions are true.

This procedure makes use of the function firstDiff which we will describe below. At the start of the main procedure
above, if |δ(q)| = 1, then we use firstDiff. If this is not the case, then |δ(q)| = 2 and, furthermore, inside the loop of the
main procedure, either f ≠ λ or g ≠ λ.

We continue by describing the firstDiff function, which takes in x as parameter, with a proof below (Lemma 3) that if the
inductive conditions hold upon its commencement, then it also holds upon its termination. Although lengthy, it is essentially
divided into four major cases marked within. We will intuitively describe and prove correctness of the firstDiff function in
Lemma 3 and we will prove correctness of the first three cases with separate claims within the proof of Lemma 3. In line 8,
it calls on the final functionmaxEqual and we also have a claim proving its functionality. In addition, Case 4 andmaxEqual
are used in the example of Section 4 and schematic drawings are provided in Fig. 1 for Cases 1, 2, 3.

firstDiff(x = (f , g, q, w, ū, v̄)) WTF
if (g = λ) // either f ∈ Σ and |δ(q)| = 2 or f = λ and |δ(q)| = 1,1

γ := δmax(q, f); qprev := δ(q, f γ−1); q′
:= δ(q, f γ); s = λ; t = λ; z = λ;2

if (|δ(q′)| = 2) //Case 13
if (δ(q′) \ δ(q) = ∅) let d ∈ δ(q′) where d is not the last letter of ū;4
else let d ∈ δ(q′) \ δ(q);5
ū := ūf γ

; w := wf γ
; q := δ(q, f γ); return (d, λ, q, w, ū, v̄);6

42 F. Biegler et al. / Theoretical Computer Science 454 (2012) 38–50

else if |δ(q′)| = 17
(s, t, z, qprev, q′, c, ϵ, β) := maxEqual(qprev, q′);8

if (|δ(q′)| = 2) //Case 29
let {d, e} := δ(q′);10
if δ(q,maxShuf(se, f γ t) is defined11

ū := ūf γ s; v̄ := v̄t; w := wf γ z; q := δ(q, f γ z);12
return (d, λ, q, w, ū, v̄);13

else ū := ūf γ t; v̄ := v̄s; w := wf γ z; q := δ(q, f γ z);14
return (λ, d, q, w, ū, v̄);15

else if (ϵ = β) //Case 316
α := δmax(qprev, c);17
if (α = β) s := s · findUnique(q′); z := z · findUnique(q′);18
else s := scmax{α,β−α}

; t := tcmin{α,β−α}
; z := zcβ

;19
if (δ(q,maxShuf(s, f γ t)) is defined20

ū := ūf γ t; v̄ := v̄s; w := wf γ z; q := δ(q, f γ z);21
return (λ, λ, q, w, ū, v̄);22

else ū := ūf γ s; v̄ := v̄t; w := wf γ z; q := δ(q, f γ z);23
return (λ, λ, q, w, ū, v̄);24

else if (ϵ ≠ β) //Case 425
if (2ϵ > β)26

q′
:= δ(q′, cβ); r := findUnique(q′);27

if (δ(q,maxShuf(scϵ, f γ t)) is defined28
ū := ūf γ scβ−ϵ

; v̄ := v̄tcϵr;29
else ū := ūf γ cϵr; v̄ := v̄tscβ−ϵ

;30
w := wf γ zcβr; q := δ(q, f γ zcβr); return (λ, λ, q, w, ū, v̄);31

else let d ∈ δ(δ(q′, cϵ)) \ {c}32
if (δ(q,maxShuf(scϵ+1, f γ t)) is defined33

ū := ūf γ scϵ
; v̄ := v̄t; w := wf γ zcϵ

; q := δ(q, f γ zcϵ);34
return (d, λ, q, w, ū, v̄);35

else ū := ūf γ t; v̄ := v̄scϵ
; w := wf γ zcϵ

; q := δ(q, f γ zcϵ);36
return (λ, d, q, w, ū, v̄);37

else (|δ(q′)| /∈ {1, 2}) print(‘‘Not decomposable’’); //end if line 338
else if (f = λ) (similar to the case where g = λ with f , g and ū, v̄ switched)39
else print(‘‘Not decomposable’’); �40

We will briefly describe firstDiff intuitively, with further additional details in Lemma 3. Each time firstDiff executes,
it concatenates some letters to at least one of ū or v̄ until u and v have been completely determined. We use the variable
q′ as a temporary variable which holds a state reachable from q. We will only consider the case where g = λ, as the case
where g ≠ λ is symmetric. In line 2, the maximal number of f ’s from state q is read to obtain state q′. Then, if there are
two transitions which can be followed, case 1 applies. Otherwise there must only be one transition and either case 2, 3 or 4
will apply. Each of these cases reads additional letters from state q′ such that when we concatenate them with w, we get a
unique (u, v)-decomposition, which is necessary to prove the inductive definition on return to the main procedure. Other
temporary variables will be explained in the proof.

We now give the last function, maxEqual, which is called from line 8 of firstDiff. It determines the longest sequence
s = t = aα1

1 aα2
2 · · · aαk

k such that both u and v continue with s = t . This is done by repetitively checking, for the current state
q′ if the maximal number of ai’s is twice as much as the minimal number of ai’s that can be read starting from q′. Intuitively,
the purpose of this function is that when we read both s and t , which are the same, we will know that (ūf γ s, v̄t) is a unique
decomposition. But in order to determine whether the letters that follow those are read from either u or read from v, we
need to read an alternate path of characters inside either case 2, 3 or 4 of firstDiff before we can conclude which must be
read from u and which from v. Indeed, we need to use state q (the original state at the beginning of firstDiff before reading
s and t to determine whether the additional letters are read from u or v. A formal proof of the behavior ofmaxEqual as well
as an explanation of additional temporary variables are found inside the proof of Lemma 3. Also,maxEqual is used multiple
times in the example of Section 4.

maxEqual(qprev, q′) WTF
s := λ; t := λ;1
while (|δ(q′)| = 1)2

F. Biegler et al. / Theoretical Computer Science 454 (2012) 38–50 43

c := δ(q′); β := δmax(q′, c); ϵ := δmin(q′, c);3
if (2 · ϵ = β)4

s := scϵ
; t := tcϵ

; z := zcβ
;5

qprev := δ(q′, cβ−1); q′
:= δ(q′, cβ);6

else return (s, t, z, qprev, q′, c, ϵ, β);7
return (s, t, z, qprev, q′, c, ϵ, β); �8

The following lemma shows that whenever the inductive condition holds on some x when firstDiff starts, then the
inductive condition also holds on it when returned by firstDiff. Furthermore, at least some letters are read fromM on every
execution of firstDiff ensuring termination of the main procedure. From Lemma 3, it then follows that the entire procedure
works correctlywheneverM is shuffle decomposable into twowords. The proof of Lemma 3 is divided into five claimswhich
correspond to the different cases of the algorithm and themaxEqual function.

Lemma 3. If x = (f , g, q, w, ū, v̄), the inductive conditions hold on x and exactly one of (f ∈ Σ, g = λ), or (g ∈ Σ, f = λ), or
(f = g = u = v = w = λ, q = q0) is true before executing firstDiff(x), which returns x1 = (f1, g1, q1, w1, ū1, v̄1) then the
inductive conditions hold on x1, |w1| > |w|, and exactly one of (f1 ∈ Σ, g1 = λ), or (f1 = λ, g1 ∈ Σ), or (f1 = g1 = λ, q1 ∈ F)
is true.

Proof. Wewill only consider the casewhere g = λ since the casewhere f = λ and g ∈ Σ (line 39) is symmetric by switching
all f ’s for g ’s and all ū’s for v̄’s and vice versa. Thus, at the beginning of firstDiff, (ūf , v̄) is the unique decomposition of wf .

If f = λ, then on line 2, γ = 0 (as δmax(q, λ) = 0 always), and qprev = q′
= q = q0, |δ(q)| = 1 since the main procedure

only calls firstDiff with f = g = λ when this is true, and hence |δ(q′)| = 1.
If instead f ∈ Σ , then (ū(q), v̄) is the unique decomposition ofw(q) by the assumption, |δ(q)| = 2 and δmax(q, f) = γ > 0.

Then if we read f γ from state q, it must be read from u because (ūf , v̄) is the unique decomposition of wf and thus the next
letter of v cannot be f . Thus wf γ is uniquely decomposable into (ūf γ , v̄). Then, we read f γ to obtain state q′ on line 2.

We show correctness of Case 1:

Claim 1. If line 3 is true (Case 1), then f ∈ Σ and either there exist d ∈ δ(q′)\δ(q), or δ(q′) ⊆ δ(q) and there exist d ∈ δ(q′),
with d not the last letter of ū. In either case, (ūf γ d, v̄) is the unique decomposition of wf γ d, (ūf γ (q′), v̄) = (ūf γ , v̄) is the
unique decomposition of wf γ and |δ(q′)| = 2.

Proof of Claim. Assume |δ(q′)| = 2 (line 3). If f = λ then |δ(q′)| = 1 as discussed above, and hence necessarily f ∈ Σ .
Then there must be some letter a ∈ δ(q′) with a ≠ f where a is also in δ(q) (this is the next letter of v as f is next in u after
ū), and f /∈ δ(q′) as we have read the maximal number (line 2). Since |δ(q′)| = 2, there is some d ∈ δ(q′), d ≠ a, d ≠ f (the
next letter of u after ūf γ). Suppose d ∈ δ(q). Then |δ(q)| ≥ 3 and δ(q′) ⊆ δ(q) as d, a, f ∈ δ(q). But, (ū(q), v̄) is the unique
decomposition of w(q). If ū(q)

= ū, then either ū = λ or the last letter of ū, b say, is not in δ(q). Then (ū(q), v̄) = (ū, v̄) is
the unique decomposition of w, but |δ(q)| ≥ 3 contradicts Lemma 1. Otherwise, ū(q)

≠ ū, and bl = (ū(q))−1ū, l > 0 and
δ(q, bl) is defined. Also, bl = (w(q))−1w as wf ∈ ūf v̄ and w(q)

∈ ū(q) v̄. If a ≠ b, then bl must be read from u from
state δ(q0, w(q)), as (ū(q), v̄) is a unique decomposition, and because b is the next letter of u and a is the next letter of v, and
thus δ(q) = {a, f }, a contradiction. Hence a = b, and indeed, here d is not the last letter of ū since d ≠ a = b and is the only
member in δ(q′) that is not, since δ(q′) = {a, d}. This proves the first statement of the claim. Also, blf γ must be read from u
since (ūf γ , v̄) is the unique decomposition of wf γ , and d ∈ δ(q′), d ≠ amust be read from u. In this case, the claim follows.
Suppose instead that d /∈ δ(q), and then d ∈ δ(q′) \ δ(q) must be read from u. Thus, in either case, (ūf γ d, v̄) is the unique
decomposition of wf γ d and (¯uf γ

(q′)
, v̄) = (ūf γ , v̄) is the unique decomposition of wf γ . �

Thus, at the end of line 6 when the function returns, the inductive conditions are satisfied, and Case 1 is correct.
Otherwise, assume |δ(q′)| = 1 (lines 7–37). Starting at q′, there is a function call of maxEqual at line 8 which will

determine s, t, z ∈ Σ∗ and for which we then show that z is uniquely ((ūf γ)−1u, (v̄)−1v)-decomposable into s and t .
More precisely, let aα1

1 · · · aαn
n = (ūf γ)−1u, and bβ1

1 · · · bβm
m = (v̄)−1v (this is what remains of u and v), where

a1, . . . , an, b1, . . . , bm ∈ Σ, ai ≠ ai+1, bj ≠ bj+1, for 1 ≤ i < n, 1 ≤ j < m and α1, . . . , αn, β1, . . . , βm ∈ N. The
maxEqual function will find the largest i < max{m, n} such that aα1

1 · · · aαi
i = s = bβ1

1 · · · bβi
i = t , as proven next.

Claim 2. Let i is the largest integer less than max{n,m} with aα1
1 · · · aαi

i = bβ1
1 · · · bβi

i . Then lines 4-6 of maxEqual are
executed exactly i times, upon termination s = t = aα1

1 · · · aαi
i = bβ1

1 · · · bβi
i and after executing the jth iteration, with

1 ≤ j ≤ i,

q′
= δ(q, f γ a2α1

1 · · · a
2αj
j), qprev = δ(q, f γ a2α1

1 · · · a
2αj−1
j).

Also, (s, t) is the unique ((ūf γ)−1u, (v̄)−1v)-decomposition of z = a2α1
1 · · · a2αi

i , and (ūf γ aα1
1 · · · aαi

i , v̄aα1
1 · · · aαi

i) is the
unique (u, v)-decomposition of

wf γ a2α1
1 · · · a2αi

i .

44 F. Biegler et al. / Theoretical Computer Science 454 (2012) 38–50

Proof of Claim. If i = 0, then this implies that 2 · ϵ ≠ β in line 4, which implies that α1 ≠ β1 because (ūf γ , v̄) is the unique
decomposition of wf γ and so one of u or v does not have β/2 of the next letter, and the claim holds.

Assume i > 0 and by induction, for 1 ≤ j ≤ i, after reading a2α1
1 · · · a

2αj−1
j−1 , it is uniquely decomposable into (aα1

1 · · ·

a
αj−1
j−1 , aα1

1 · · · a
αj−1
j−1). Then δmax(q′, aj) = αj + βj (number of aj’s we can read from both words), and also δmin(q′, aj) =

min{αj, βj} (the least amount of aj’s before we can read something else). Then |δ(q′)| = 1 and the condition of the while
loop on line 2 ofmaxEqual is true, 2 · δmin(q′, aj) = δmax(q′, aj), since αj = βj. Therefore, by induction, i is maximal less than
max{m, n} such that a2α1

1 · · · a2αi
i is uniquely decomposable into (aα1

1 · · · aαi
i , aα1

1 · · · aαi
i).

After this has been determined, then we have q′
= δ(q, f γ a2α1

1 · · · a2αi
i), and if i > 0, then qprev = δ(q, f γ a2α1

1 · · · a2αi−1
i).

Also, we have determined that (ūf γ)−1u and (v̄)−1v both start with s = t = aα1
1 · · · aαi

i = bβ1
1 · · · bβi

i which together
forms the unique ((ūf γ)−1u, (v̄)−1v)-decomposition of z = a2α1

1 · · · a2αi
i . Thus, we know that (ūf γ s, v̄t) is the unique (u, v)-

decomposition of wf γ z and s = t . �

Thus, after executingmaxEqual, which returns (s, t, z, qprev, q′, c, ϵ, β), we know (ūf γ s, v̄t) is the unique decomposition
of wf γ z. If at this point |δ(q′)| ≥ 2, then it must be equal to two since it is a unique decomposition by Lemma 1. Then,
δ(q′) = {e, d} and we pick d ∈ δ(q′) and we know that either (ūf γ t, v̄sd) is the unique decomposition of wf γ zd, or
(ūf γ sd, v̄t) is the unique decomposition of wf γ zd. The following claim shows that we can determine which is true using a
test starting at state q (and not q′, as we need to test an alternate path starting at q to determine the correct result).
Claim 3. Assume line 9 of firstDiff is true (Case 2). Then i ≥ 1. Also, if δ(q,maxShuf(se, f γ t)) is defined (line 11) then
(ūf γ sd, v̄t) is the unique decomposition of wf γ zd. Otherwise, if δ(q,maxShuf(se, f γ t)) is not defined then (ūf γ t, v̄sd) is
the unique decomposition of wf γ zd.
Proof of Claim. In this case we know i ≥ 1 because |δ(q′)| = 2, and there was only one transition before executing
maxEqual. To check which is true, we calculate if δ(q,maxShuf(se, f γ t)) is defined. Indeed, se = aα1

1 · · · aαi
i e, f γ t =

f γ aα1
1 · · · aαi

i , f ≠ a1, and we know (ū(q), v̄) is the unique decomposition of w(q) from the inductive conditions. Let bl be
such that b ∈ Σ , l ≥ 0 is maximal, ū ends with bl with l = 0 if ū = λ.

We know maxShuf(se, f γ t) = maxShuf(aα1
1 · · · aαi

i e, f γ aα1
1 · · · aαi

i), and this has y = aα1
1 aα2+θ2

2 · · · aαi+θi
i eθi+1 as a prefix,

where θi+1 > 0 is maximal, θj ≥ 0 for 2 ≤ j ≤ i + 1 (the maxShuf function always takes all copies of each letter from the
first parameter with all of the next letter from the second parameter if the letters are the same).

Assume either l = 0 or l > 0 and b /∈ δ(q). We also will assume that δ(q,maxShuf(se, f γ t)) is defined. Then
(ū(q), v̄) = (ū, v̄) by the assumption, which is a unique decomposition by the inductive conditions. But when reading y
from state q, aα1

1 · · · aαi
i emust be read from v, as f ≠ a1, (v̄)−1v starts with aα1

1 · · · aαi
i ,maxShuf gives themaximum number

of letters in each section, and θi+1 is maximal. This implies (ūf γ sd, v̄t) is the unique decomposition of wf γ zd as d must
be read from u. If instead δ(q,maxShuf(se, f γ t)) is not defined, then the remaining part of v starts with aα1

1 · · · aαi
i d, and

(ūf γ t, v̄sd) is the unique decomposition of wf γ zd.
Assume b ∈ δ(q) and l > 0. But (ū(q))−1u must start with blf since ū(q) is defined by the inductive conditions, and

(v̄)−1v must start with b since b ∈ δ(q) and (ūf , v̄) is the unique decomposition of wf . Hence, a1 = b. Furthermore, if
δ(q,maxShuf(se, f γ t)) is defined, then when reading y, aα1

1 · · · aαi
i e must come from v as a1 = b ≠ f , (v̄)−1v starts with

aα1
1 · · · aαi

i ,maxShuf gives themaximum number of letters in each section, and (ū(q), v̄) is the unique decomposition ofw(q).
This implies (ūf γ sd, v̄t) is the unique decomposition ofwf γ zd if δ(q,maxShuf(se, f γ t)) is defined. If instead it is not defined
then (ūf γ t, v̄sd) is the unique decomposition. �

In either case, after concatenating f γ s (where s = t) to ū and t to v̄, then (ū(q), v̄) = (ū, v̄) = (ū, v̄(q)) which is the
unique decomposition of w = w(q) since i ≥ 1 and ai /∈ δ(q). The previous claim also intuitively illustrates the purpose
of the maxEqual function. When in state q′ and there are transitions on d and e, it is necessary to examine state q before
reading s and t in order to determine whether d is read from u or v.

If |δ(q′)| = 1 after executing maxEqual in line 8 of firstDiff, then in the last iteration of the while loop of maxEqual,
the condition of the while loop in maxEqual will be true, and it will calculate c , the unique next letter, β , the maximal
number of c ’s which can be read, and ϵ, which is the minimal number before reading another letter or reaching a final state.
But the if statement will be false, as it is the last iteration, and c, β and ϵ will be returned. In this case, either ϵ = β , and
lines 16–24 (Case 3) will be executed, or ϵ ≠ β and lines 25–37 (Case 4) will be executed. Notice that it is impossible for
|δ(q′)| = 0when evaluating the condition of the while loop inmaxEqual since otherwise the second last time the condition
was evaluated, 2ϵ = β , meaningwe have ϵ c ’s to read from both u and v before reading the end of theword, but then ϵ = β ,
a contradiction. Thus, after executing line 8 of firstDiff, either Case 2, 3 or 4 occurs.

Assume ϵ = δmax(q′, c) = β (Case 3, line 16). Notice in this case that q′
≠ q0 asM is acyclic and otherwise f = ū = v̄ = λ

and then one of u or v would be empty, or both would be unary over the same letter as ϵ = β , a contradiction. Then either
f ≠ λ or i ≥ 1, f = λ and qprev = δ(q0, a

2α1
1 · · · a2αi−1

i).
We will split the correctness of this case across two claims, depending on whether line 18 holds or not.

Claim 4. Assume line 18 is true. If δ(q,maxShuf(s · findUnique(q′), f γ t)) is defined (line 20), then (ūf γ t, v̄s ·

findUnique(q′)) is the unique decomposition of wf γ z · findUnique(q′), otherwise (ūf γ s · findUnique(q′), v̄t) is the unique
decomposition. In either case, δ(q, f γ z · findUnique(q′)) ∈ F .

F. Biegler et al. / Theoretical Computer Science 454 (2012) 38–50 45

Proof of Claim. Assume first that f ≠ λ and i ≥ 1. Aswe can read asmany c ’s from qprev aswewere able to read from q′ (line
18 is true), then all of the c ’s that come from both u and v come from only one word (as we have not read all ai’s from both
words). Then from state q′, one word has already been read entirely since |δ(q′)| = 1 and we can determine the other word
with findUnique(q′), thus giving the unique ((ūf γ)−1u, (v̄)−1v)-decomposition of z. Then, either (ūf γ t, v̄s·findUnique(q′))
or (ūf γ s · findUnique(q′), v̄t) is the unique decomposition of wf γ z · findUnique(q′).

To check which is true, we calculatemaxShuf(s · findUnique(q′), f γ t) =

maxShuf(aα1
1 · · · aαi

i · findUnique(q′), f γ aα1
1 · · · aαi

i),

which has y = aα1
1 aα2+θ2

2 · · · aαi+θi
i cθi+1 as prefix, for some θj, 2 ≤ j ≤ i + 1, θi+1 > 1 maximal, c ≠ ai, as f ≠ a1, and

we test if δ(q, y) is defined. As with the case above, if it is, then aα1
1 · · · aαi

i c must be a prefix of what remains of v, and thus
(ūf γ t, v̄s · findUnique(q′)) is the unique decomposition of wf γ z · findUnique(q′) and δ(q, f γ z · findUnique(q′)) takes the
automaton to a final state. Otherwise, (ūf γ s · findUnique(q′), v̄t) is the unique decomposition andwe are done determining
both words. The cases where f ≠ λ, i = 0 and f = λ, i ≥ 1 are similar. �

Claim 5. Assume that line 18 is false. If the following transition ofM is defined, δ(q,maxShuf(scmax{α,β−α}, f γ tcmin{α,β−α}))
(line 20), then the pair (ūf γ tcmin{α,β−α}, v̄scmax{α,β−α}) is the unique decomposition ofwf γ zcβ . Otherwise, (ūf γ scmax{α,β−α},
v̄tcmin{α,β−α}) is the unique decomposition. In either case, δ(q, f γ zcβ) ∈ F .

Proof of Claim. Assume f ≠ λ and i ≥ 1. If we cannot read as many c ’s from qprev as we have read from q′ (line 18 is false),
then u endswith f γ aα1

1 · · · aαi
i followed by some positive number of c ’s, and v endswith aα1

1 · · · aαi
i followed by some positive

number of c ’s (if some word had other letters after, then line 16 would not have been true and if one word has zero c ’s, then
α = β). Then α = δmax(qprev, c) gives the number of c ’s in one of the words (as we have not read all ai’s from both words),
and β − α gives the other. Then either (ūf γ scmax{α,β−α}, v̄tcmin{α,β−α}) or (ūf γ tcmin{α,β−α}, v̄scmax{α,β−α}) gives the unique
decomposition. Then we calculate

maxShuf(scmax{α,β−α}, f γ tcmin{α,β−α}) = maxShuf(aα1
1 · · · aαi

i cmax{α,β−α}, f γ aα1
1 · · · aαi

i cmin{α,β−α}),

which starts with y = aα1
1 aα2+θ2

2 · · · aαi+θi
i cθi+1 , where θj ≥ 0, 2 ≤ j ≤ i, θi+1 is maximal and θi+1 ≥ max{α, β − α}.

Similar to the third claim above, if δ(q, y) is defined, then aα1
1 · · · aαi

i cmax{α,β−α} must be read from v, which implies that
(ūf γ tcmin{α,β−α}, v̄scmax{α,β−α}) is the unique decomposition of wf γ zcβ , otherwise (ūf γ scmax{α,β−α}, v̄tcmin{α,β−α}) is the
unique decomposition.

If instead f ≠ λ, i = 0 or f = λ, i ≥ 1, then the cases are similar. �

Hence, at the end of case 3, we have finished determining both u and v, and indeed the inductive conditions hold.
Lastly, assume ϵ = δmin(q′, c) ≠ β (Case 4). Then theremust exist d ≠ c that can be read from state δ(q′, cϵ) since ϵ ≠ β

and because all words in u v are of the same length.
Assume first 2ϵ > β . Then after reading a2α1

1 · · · a2αi
i , we know that oneword ends with aα1

1 · · · aαi
i cβ−ϵ as we cannot read

any letter before reading ϵ c ’s, and β − ϵ < ϵ (if there are letters after this segment, then ϵ would not be minimal as β − ϵ is
smaller). Then,we read cβ from the state q′ anddetermine the remaining portion of the otherwordwith r = findUnique(q′).

Then

y = maxShuf(scϵ, f γ t) = maxShuf(aα1
1 · · · aαi

i cϵ, f γ aα1
1 · · · aαi

i)

which has as prefix aα1
1 aα2+θ2

2 · · · aαi+θi
i cθi+1 , where θj ≥ 0, 2 ≤ j ≤ i, θi+1 ≥ ϵ is maximal. Then, as with case 2 above, if

δ(q, y) is defined, the remaining portion of v must start with tcϵ . Thus, (ūf γ scβ−ϵ, v̄tcϵr) is the unique decomposition of
wf γ zcβr . The case is similar if δ(q, y) is not defined.

If instead 2ϵ ≤ β (which must not be equal otherwise i would not have been maximal), then consider

y = maxShuf(scϵ+1, f γ t) = maxShuf(aα1
1 · · · aαi

i cϵ+1, f γ aα1
1 · · · aαi

i)

which has as prefix aα1
1 aα2+θ2

2 · · · aαi+θi
i cθi+1 , where θj ≥ 0, 2 ≤ j ≤ i, θi+1 > ϵ is maximal. Then, as with case 2 above,

if δ(q, y) is defined, the remaining portion of v must start with scϵ+1. Thus, (ūf γ scϵd, v̄t) is the unique decomposition of
wf γ zcϵd. Furthermore, after setting q, ū, v̄, w on line 34, then (ū(q), v̄) has ū = ū(q)cϵ and w = w(q)cϵ and since 2ϵ < β ,
and thus δ(q, cϵ) is defined (from the definition of ū(q)), and this is the unique decomposition of w(q). The case is similar if
δ(q, y) is not defined.

This concludes Lemma 3. �

Hence, by induction, each timewe iterate the loop of themain procedure and also at the beginning of themain procedure,
the inductive conditions hold, and at the end of the algorithm (ū, v̄), is the unique decomposition of w ∈ u v.

The time complexity is proportional to the depth of the automaton as, every time we read some letters, we concatenate
them to either ū or v̄, with the exception of Case 4, where we test if ϵ ≠ β , but then sometimes concatenate only ϵ c ’s to
either ū or v̄. But there, we only need to determine if 2ϵ < β without exactly determining β .

46 F. Biegler et al. / Theoretical Computer Science 454 (2012) 38–50

Fig. 2. The trim DFAM , where the word read in u v is shown along the path marked in bold.

Theorem 4. Let M be an acyclic, trim, non-unary DFA over Σ . Then we can determine words u, v ∈ Σ+ such that, L(M) has a
shuffle decomposition implies that L(M) = u v is the unique decomposition. This can be calculated in time O(|u| + |v|).

We note again that this theorem only provides the correct u, v under the assumption thatM is decomposable. IfM is not
decomposable, then depending on the structure of M , the algorithm will either output that there is no decomposition, or
output two ‘‘incorrect’’ words (sinceM does not have a decomposition).

This immediately implies that it can also run in time O(M), which is always at least |u| + |v| in size. This is indeed an
interesting property of shuffle automata, as the words being determined are encoded in a relatively small subset of the
automata.

4. An example to illustrate Section 3

We now show how our algorithm works on the DFAM in Fig. 2. As explained previously, x implicitly defines f , g , q, w, ū
and v̄ and vice versa.

We start out the Procedure by setting x = (λ, λ, q0, λ, λ, λ). As |δ(q0)| = 1, we call firstDiff(x) on line 3.
Inside firstDiff(λ, λ, q0, λ, λ, λ), we have g = λ and set γ := δmax(q0, λ) = 0, s := λ, t := λ, z := λ, qprev := q0 and

q′
:= δ(q0, λ) = q0. Then, as |δ(q0)| = 1, we call (s, t, qprev, q′, c, ϵ, β) := maxEqual(q0, q0) on line 8.
Inside maxEqual(q0, q0) we enter the while loop on line 2 and set c := b, β := 2 and ϵ = 1. Then on line 4, 2 · ϵ = β

holds and we set s := b, t := b, z := b2, qprev = q1 and q′
= q2. Then |δ(q2)| = 1 and we re-iterate the while loop on line 2

by setting c := a, β := 3 and ϵ = 1. Then 2 · ϵ ≠ β and we return (b, b, b2, q1, q2, a, 1, 3).
Back in firstDiff we have neither |δ(q2)| = 2 nor ϵ = β and, hence, Case 4 applies on line 25. As 2ϵ < β , then

maxShuf(scϵ+1, f γ t) = maxShuf(baa, b) = b2a2 and δ(q0, b2a2) = q9 is defined. Hence we set ū := ba, v̄ := b, w := b2a
and q := q4. Then, we return x := (b, λ, q4, b2a, ba, b).

In the Procedure, we have |δ(q4)| = 2 and f ≠ λ and, therefore the condition of the while loop on line 5 still holds and
we call firstDiff(x) again.

Inside firstDiff(b, λ, q4, b2a, ba, b), we have g = λ and set γ := δmax(q4, b) = 1, s := λ, t := λ, z := λ, qprev := q4 and
q′

:= δ(q4, b) = q7.
Then, as |δ(q0)| = 1, we call (s, t, qprev, q′, c, ϵ, β) := maxEqual(q4, q7) on line 8. Inside maxEqual(q4, q7) we set

s := λ, t := λ and enter the while loop on line 2 and set c := a, β := 3 and ϵ = 1. Then 2 · ϵ ≠ β and maxEqual returns
(λ, λ, q4, q7, a, 3, 1).

Back in firstDiff we have |δ(q7)| ≠ 2 and ϵ = 1 ≠ 3 = β and, hence, we go to Case 4, where 2ϵ < β and
maxShuf(scϵ+1, f γ t) = maxShuf(aa, b) = a2b and δ(q4, a2b) = q19 is defined. Hence we set ū := ba · ba, v̄ := b · λ,
w := b2a · ba and q := q11. Then, we return x := (b, λ, q11, b2aba, baba, b).

In the Procedure, we have |δ(q11)| = 2 and f ≠ λ and we enter the while loop in the Procedure on line 5 and call
firstDiff(x) again.

In firstDiff(b, λ, q11, b2aba, baba, b), then g = λ and set γ := δmax(q11, b) = 1, s := λ, t := λ, z := λ, qprev := q11
and q′

:= δ(q11, b) = q16. Then, as |δ(q16)| = 1, we call (s, t, qprev, q′, c, ϵ, β) := maxEqual(q11, q16) on line 8. Inside
maxEqual(q11, q16) we set s := λ, t := λ and enter the while loop on line 2 and set c := a, β := 4 and ϵ = 2. Then on

F. Biegler et al. / Theoretical Computer Science 454 (2012) 38–50 47

line 4, 2 · ϵ = β holds and we set s := a2, t := a2, z := a4, qprev = q32 and q′
= q37. Then |δ(q37)| = 1 and we re-iterate the

while loop on line 2 by setting c := b, β := 3 and ϵ := 2. Then 2 · ϵ ≠ β andmaxEqual returns (a2, a2, a4, q32, q37, b, 2, 3).
Back in firstDiff, we have |δ(q37)| ≠ 2, ϵ ≠ β andwe go to Case 4. But 2ϵ > β and so q′

:= δ(q37, b3) = q50 and r := ab.
Then

maxShuf(scϵ, f γ t) = maxShuf(a2b2, ba2) = a2b3a2

and δ(q11, a2b3a2) is defined. Hence, in line 29 we set ū := baba · ba2b, v̄ := b · a2b2ab, w := b2aba · ba4b3ab and q := q52,
which is a final state, and we return x := (λ, λ, q52, b2ababa4b3ab, bababa2b, ba2b2ab).

In the Procedure, we now have |δ(q52)| = 0 and therefore we output the candidate solution

{u, v} = {bababa2b, ba2b2ab}.

It is not difficult to see that, in fact, L(M) = bababa2b ba2b2ab.

5. Efficiently deciding shuffle inclusion

We present an algorithm which decides, for a given DFA M = (Q , Σ, δ, q0, F) and two words u, v ∈ Σ+ whether
u v ⊆ L(M). We then proceed to show the algorithm’s correctness and establish its complexity, which is quite low. For
the opposite problem (deciding whether L(M) ⊆ u v), it is easy to see that deciding whether L(M) ⊆ u v is in coN P .
Indeed, L(M) ⊈ u v is in N P , as we can guess a word in L(M) and verify that it is not in u v in polynomial time. The
exact complexity however is unknown.

We first define a naive shuffle NFA, as introduced and discussed in [5]. Essentially, it is the ‘‘natural’’ NFA produced by
using a state associated with every position pair inside both u and v.
Definition 5. Let Σ be a finite alphabet and let u = u1 · · · um, v = v1 · · · vn ∈ Σ+, where ui, vj ∈ Σ for all 1 ≤ i ≤ m and
1 ≤ j ≤ n. We say M is the naive shuffle NFA for u and v (or the naive NFA for u v) if and only if M = (Q , Σ, δ, q0, F)
where Q = {0, . . . ,m} × {0, . . . , n}, q0 = (m, n), F = {(0, 0)} and δ is defined as follows:

• for 1 ≤ k ≤ m, 0 ≤ l ≤ n, we have (k − 1, l) ∈ δ((k, l), u(m−k+1)); and
• for 0 ≤ k ≤ m, 1 ≤ l ≤ n, we have (k, l − 1) ∈ δ((k, l), v(n−l+1)).

For all i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n we denote by ui and vj the suffixes of length i and j of the words u and v,
respectively. We furthermore define

LM(i, j) = ui vj,

which is accepted by the automaton M ′, where M ′
= (Q , Σ, δ, (i, j), F). The subscript M is omitted when there is no

possibility for confusion.
We now need to define, how to compute the ‘‘next’’ set of states for a given subset of states of a naive NFA and a letter.

Let u, v ∈ Σ+, and letM ′
= (Q ′, Σ ′, δ′, q′

0, F
′) be the naive shuffle NFA of u and v, thenwe define next(u,v) : 2Q ′

×Σ → 2Q ′

by

next(u,v)(X, a) =


(i,j)∈X

{(i′, j′) | (i′, j′) ∈ δ′((i, j), a)}.

In the following,we assume thatM = (Q , Σ, δ, q0, F) is a deterministic finite automaton. The algorithmbelow calculates
a label associated with each state ofM . For each prefixw of length i of any word in u v, the algorithm assigns all the states
of M ′ that are in δ′(q′

0, w) is placed in the label associated with the unique state δ(q0, w) ∈ Q . Then, we can examine the
labels to decide whether or not u v ⊆ L(M).
Subset(M, u, v) WTF

label0(q0) = {(|u|, |v|)};1
for(i = 0 to |u| + |v| − 1)2

foreach state q ∈ Q with labeli(q) ≠ ∅3
foreach a ∈ Σ4

x := next(labeli(q), a);5
if (x ≠ ∅)6

if (δ(q, a) is undefined)7
return false;8

else9
q̃ := δ(q, a);10
labeli+1(q̃) := labeli+1(q̃) ∪ x;11

foreach (q ∈ Q with label|u|+|v|(q) ≠ ∅)12
if (q /∈ F)13

return false;14
return true;15

48 F. Biegler et al. / Theoretical Computer Science 454 (2012) 38–50

We now show that the algorithm Subset(M, u, v) does in fact decide whether u v ⊆ L(M) in low polynomial time
with respect to the input parameters.

Theorem 6. Let M = (Q , Σ, δ, qo, F) be a deterministic finite automaton and let u, v be words over some alphabetΣ , such that
|v| ≤ |u|. Then the algorithm Subset(M, u, v) returns ‘‘true’’ if and only if u v ⊆ L(M) in time O((|u| + |v|) · |Q | · |Σ | · |v|).

Proof. The proof in broken into several claims to increase readability.

Claim 6. Subset(M, u, v) returns ‘‘true’’ if u v ⊆ L(M).

Proof of Claim. Let

u = u1 · · · um and v = v1 · · · vn,

where u1, . . . , um, v1, . . . , vn ∈ Σ . We show by induction that after iteration i of the for-loop on line 2, for each word
w ≤p w̃ ∈ u v, |w| = i + 1, we have

{(m − j, n − l) | w ∈ u1 · · · uj v1 · · · vl} ⊆ labeli+1(δ(q0, w)).

Let b and c be the first letters of u and v, respectively (where, naturally, b = c is possible), which implies that b and c are
the only prefixes of u v of length 1.

We first show that after iteration 0, we have {(m− 1, n)} ⊆ label1(δ(q0, b)) and {(m, n− 1)} ⊆ label1(δ(q0, c)). Lines 5
through 11 with i := 0, q := q0 and a := b assign

x := next(label0(q0), b) = next({(m, n)}, b) ⊇ {(m − 1, n)}.

As u v ⊆ L(M), δ(q0, b) is defined and assign q̃ = δ(q0, b) and thus, at the end of iteration 0, we have

{(m − 1, n)} ⊆ label1(q̃) = label1(δ(q0, b)).

Similarly we can show that after iteration 0, we have

{(m, n − 1)} ⊆ label1(δ(q0, c)).

Now assume that after iteration k − 1, where 0 < k ≤ |u| + |v|, for each word w′
≤p w̃ ∈ u v, |w′

| = k, we have
{(m − j, n − l) | w′

∈ u1 · · · uj v1 · · · vl} ⊆ labelk(δ(q0, w′)).
Let i = k and w ≤p w̃ ∈ u v with |w| = k + 1. Then w = w′b for some word w′ with |w′

| = k and some letter
b ∈ Σ , and we know by our assumption that after iteration k − 1 we have {(m − j, n − l) | w′

∈ u1 · · · uj v1 · · · vl} ⊆

labelk(δ(q0, w′)). Then, when executing lines 5 through 11 with i := k, q := q′
= δ(q0, w′) and a := b, we get

x := next(labelk(q′), b) ⊇ next({(m − j, n − l) | w′
∈ u1 · · · uj v1 · · · vl}, b) by the inductive hypothesis, which is

equal to {(m − j, n − l) | w′b ∈ u1 · · · uj v1 · · · vl}. As u v ⊆ L(M), we have δ(q′, b) ≠ ∅, which implies that

labelk+1(δ(q′, b)) ⊇ next(labelk(q′), b)

⊇ {(m − j, n − l) | w′b ∈ u1 · · · uj v1 · · · vl}.

Hence, we know by induction that after iteration |u| + |v| − 1 of the for-loop on line 2, for each word w ∈ u v, we
have {(0, 0)} ⊆ label|u|+|v|(δ(q0, w)). But then, as u v ⊆ L(M), we must have δ(q0, w) ∈ F for all w ∈ u v and the
algorithm returns ‘‘true’’ on line 15. �

Claim 7. Subset(M, u, v) returns ‘‘false’’ if u v ⊈ L(M).

Proof of Claim. Let L′
= u v \ L(M). As u v ⊈ L(M), it follows that L′ is non-empty. For each w ∈ L′, we define

max(w) = max{|w′
| | w′

≤p w, δ(q0, w′) ≠ ∅}, and
k = min

w∈L′
{max(w)}.

Assume first that k < |u| + |v|. Then there exists a word w ∈ L′, with w = w′bw′′, where w′, w′′
∈ Σ∗, |w′

| = k and
b ∈ Σ , such that δ(q0, w′) is defined but δ(q0, w′b) is undefined. We know from the proof of the previous claim, and by the
minimality of w′, that after iteration k − 1 of the for-loop on line 2, we have

{(m − j, n − l) | w′
∈ u1 · · · uj v1 · · · vl} ⊆ labelk(δ(q0, w′)).

Then, during iteration k, when executing lines 5 through 11 with q := δ(q0, w′) and a := b, we obtain x ≠ ∅, as
w′

≤p w̃ ∈ u v, but δ(δ(q0, w′), b) is undefined, and, hence, the algorithm returns ‘‘false’’.
Now assume that k = |u| + |v|. Then, by the proof of the previous claim, after iteration |u| + |v| − 1 of the for-loop on

line 2, for each word w ∈ u v, we have

{(0, 0)} ⊆ label|u|+|v|(δ(q0, w)).

Let w′
∈ L′, |w′

| = |u| + |v|. Then label|u|+|v|(δ(q0, w′)) is defined, but, as w′ /∈ L(M), δ(q0, w′) /∈ F and the algorithm
returns ‘‘false’’. �

F. Biegler et al. / Theoretical Computer Science 454 (2012) 38–50 49

Fig. 3. Pictured above is a DFAM , such that bba aba ⊆ L(M).

Table 1
The entries contain labeli(q), for all q ∈ QM and 0 ≤ i ≤ |u| + |v|.

0 1 2 3 4 5 6

q0 {(3, 3)}
q1 {(3, 2)} {(1, 3)}
q2 {(2, 3)}
q3 {(0, 3), (1, 2)}
q4 {(2, 2), (3, 1)} {(1, 1)}
q5 {(1, 2), (2, 1)} {(0, 2)}
q6 {(3, 0)} {(1, 1)} {(1, 0), (0, 1)}
q7 {(1, 0), (0, 1)} {(0, 0)}
q8 {(2, 0), (0, 2)} {(0, 0)}
q9 {(2, 0)} {(1, 0), (0, 1)}
q10 {(1, 0)}
q11 {(0, 0)}

Claim 8. Subset(M, u, v) operates in time O((|u| + |v|) · |Q | · |Σ | · |v|).

Proof of Claim. The three loops beginning on lines 2, 3 and 4, operate in timeO(|u|+|v|),O(|Q |) andO(|Σ |), respectively.
Inside the foreach-loop on line 4 every step takes constant time except for lines 5 and 11, which takes time O(|v|), as there
can be at most |v| elements in labeli(q) for any 0 ≤ i ≤ |u| + |v| and q ∈ Q . Thus the nested loops starting on line 2 operate
in time O((|u| + |v|) · |M| · |Σ | · |v|), which is the time complexity of the entire algorithm, as the remaining foreach-loop
on line 12 operates in time O(|M|). �

This proves the theorem. �

5.1. Example

We now apply the algorithm to the automatonM pictured in Fig. 3 and u = bba and v = aba.
When executing Subset(M, u, v), The entries of Table 1 represent which sets are assigned to which states and labeling

functions at the end of the algorithm. As all the states q ∈ Q which have label6(q) ≠ ∅ are final states, the algorithm returns
‘‘true’’. It is easy to see that u v (L(M), as, for example, abaa ∈ L(M).

6. Conclusions and discussion

We provide an algorithm which takes as input a trim, acyclic, non-unary DFA, and either indicates that the automaton
does not accept the shuffle of twowords, or determines twowords such that if the DFA is decomposable, then the twowords
is the unique solution. We cannot tell if the DFA is itself decomposable. However, if the algorithm outputs two words u and
v, then we can attempt to test equivalence of u v with M . We can then confirm that u v ⊆ L(M) in polynomial time.
However, it is unknown if we can additionally test whether L(M) ⊆ u v in polynomial time.

Other open questions involving shuffle on words involve improving the lower and upper bounds on the size of the
minimal DFAs accepting the shuffle of two words. Although an exponential upper and lower bound is known, the bound is
not tight.

Acknowledgments

Research supported in part by grants from the Natural Sciences and Engineering Research Council of Canada.

References

[1] C. Câmpeanu, K. Salomaa, S. Vágvölgyi, Shuffle decompositions of regular languages, International Journal of Foundations of Computer Science 13
(2002) 799–816.

[2] M. Ito, Shuffle decomposition of regular languages, Journal of Universal Computer Science 8 (2) (2002) 257–259.

50 F. Biegler et al. / Theoretical Computer Science 454 (2012) 38–50

[3] J. Berstel, L. Boasson, Shuffle factorization is unique, Theoretical Computer Science 273 (2002) 47–67.
[4] F. Biegler, M. Daley, M. Holzer, I. McQuillan, On the uniqueness of shuffle on words and finite languages, Theoretical Computer Science 410 (2009)

3711–3724.
[5] F. Biegler, M. Daley, I. McQuillan, On the shuffle automaton size for words, in: Proceedings of the workshop on Descriptional Complexity of Formal

Systems, DCFS 2009, 2009, pp. 115–126.
[6] C. Câmpeanu, K. Salomaa, S. Yu, Tight lower bound for the state complexity of shuffle of regular languages, Journal of Automata, Languages and

Combinatorics 7 (2002) 303–310.
[7] S. Yu, Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 1, Springer, Berlin Heidelberg, 1997, pp. 41–110.

	Algorithmic Decomposition of Shuffle on Words
	Citation of this paper:

	Algorithmic decomposition of shuffle on words
	Introduction
	Definitions
	Algorithms for shuffle decomposition
	An example to illustrate Section 3
	Efficiently deciding shuffle inclusion
	Example

	Conclusions and discussion
	Acknowledgments
	References

