2,330 research outputs found

    Trellis decoding complexity of linear block codes

    Get PDF
    In this partially tutorial paper, we examine minimal trellis representations of linear block codes and analyze several measures of trellis complexity: maximum state and edge dimensions, total span length, and total vertices, edges and mergers. We obtain bounds on these complexities as extensions of well-known dimension/length profile (DLP) bounds. Codes meeting these bounds minimize all the complexity measures simultaneously; conversely, a code attaining the bound for total span length, vertices, or edges, must likewise attain it for all the others. We define a notion of “uniform” optimality that embraces different domains of optimization, such as different permutations of a code or different codes with the same parameters, and we give examples of uniformly optimal codes and permutations. We also give some conditions that identify certain cases when no code or permutation can meet the bounds. In addition to DLP-based bounds, we derive new inequalities relating one complexity measure to another, which can be used in conjunction with known bounds on one measure to imply bounds on the others. As an application, we infer new bounds on maximum state and edge complexity and on total vertices and edges from bounds on span lengths

    A Study on the Impact of Locality in the Decoding of Binary Cyclic Codes

    Full text link
    In this paper, we study the impact of locality on the decoding of binary cyclic codes under two approaches, namely ordered statistics decoding (OSD) and trellis decoding. Given a binary cyclic code having locality or availability, we suitably modify the OSD to obtain gains in terms of the Signal-To-Noise ratio, for a given reliability and essentially the same level of decoder complexity. With regard to trellis decoding, we show that careful introduction of locality results in the creation of cyclic subcodes having lower maximum state complexity. We also present a simple upper-bounding technique on the state complexity profile, based on the zeros of the code. Finally, it is shown how the decoding speed can be significantly increased in the presence of locality, in the moderate-to-high SNR regime, by making use of a quick-look decoder that often returns the ML codeword.Comment: Extended version of a paper submitted to ISIT 201

    On complexity of trellis structure of linear block codes

    Get PDF
    The trellis structure of linear block codes (LBCs) is discussed. The state and branch complexities of a trellis diagram (TD) for a LBC is investigated. The TD with the minimum number of states is said to be minimal. The branch complexity of a minimal TD for a LBC is expressed in terms of the dimensions of specific subcodes of the given code. Then upper and lower bounds are derived on the number of states of a minimal TD for a LBC, and it is shown that a cyclic (or shortened cyclic) code is the worst in terms of the state complexity among the LBCs of the same length and dimension. Furthermore, it is shown that the structural complexity of a minimal TD for a LBC depends on the order of its bit positions. This fact suggests that an appropriate permutation of the bit positions of a code may result in an equivalent code with a much simpler minimal TD. Boolean polynomial representation of codewords of a LBC is also considered. This representation helps in study of the trellis structure of the code. Boolean polynomial representation of a code is applied to construct its minimal TD. Particularly, the construction of minimal trellises for Reed-Muller codes and the extended and permuted binary primitive BCH codes which contain Reed-Muller as subcodes is emphasized. Finally, the structural complexity of minimal trellises for the extended and permuted, and double-error-correcting BCH codes is analyzed and presented. It is shown that these codes have relatively simple trellis structure and hence can be decoded with the Viterbi decoding algorithm

    Convolutional and tail-biting quantum error-correcting codes

    Full text link
    Rate-(n-2)/n unrestricted and CSS-type quantum convolutional codes with up to 4096 states and minimum distances up to 10 are constructed as stabilizer codes from classical self-orthogonal rate-1/n F_4-linear and binary linear convolutional codes, respectively. These codes generally have higher rate and less decoding complexity than comparable quantum block codes or previous quantum convolutional codes. Rate-(n-2)/n block stabilizer codes with the same rate and error-correction capability and essentially the same decoding algorithms are derived from these convolutional codes via tail-biting.Comment: 30 pages. Submitted to IEEE Transactions on Information Theory. Minor revisions after first round of review

    The trellis complexity of convolutional codes

    Get PDF
    Convolutional codes have a natural, regular, trellis structure that facilitates the implementation of Viterbi's algorithm. Linear block codes also have a natural, though not in general a regular, “minimal” trellis structure, which allows them to be decoded with a Viterbi-like algorithm. In both cases, the complexity of an unenhanced Viterbi decoding algorithm can be accurately estimated by the number of trellis edge symbols per encoded bit. It would therefore appear that we are in a good position to make a fair comparison of the Viterbi decoding complexity of block and convolutional codes. Unfortunately, however, this comparison is somewhat muddled by the fact that some convolutional codes, the punctured convolutional codes, are known to have trellis representations which are significantly less complex than the conventional trellis. In other words, the conventional trellis representation for a convolutional code may not be the “minimal” trellis representation. Thus ironically, we seem to know more about the minimal trellis representation for block than for convolutional codes. We provide a remedy, by developing a theory of minimal trellises for convolutional codes. This allows us to make a direct performance-complexity comparison for block and convolutional codes. A by-product of our work is an algorithm for choosing, from among all generator matrices for a given convolutional code, what we call a trellis-canonical generator matrix, from which the minimal trellis for the code can be directly constructed. Another by-product is that in the new theory, punctured convolutional codes no longer appear as a special class, but simply as high-rate convolutional codes whose trellis complexity is unexpectedly small
    corecore