2,309 research outputs found

    On the Structure of Equilibrium Strategies in Dynamic Gaussian Signaling Games

    Full text link
    This paper analyzes a finite horizon dynamic signaling game motivated by the well-known strategic information transmission problems in economics. The mathematical model involves information transmission between two agents, a sender who observes two Gaussian processes, state and bias, and a receiver who takes an action based on the received message from the sender. The players incur quadratic instantaneous costs as functions of the state, bias and action variables. Our particular focus is on the Stackelberg equilibrium, which corresponds to information disclosure and Bayesian persuasion problems in economics. Prior work solved the static game, and showed that the Stackelberg equilibrium is achieved by pure strategies that are linear functions of the state and the bias variables. The main focus of this work is on the dynamic (multi-stage) setting, where we show that the existence of a pure strategy Stackelberg equilibrium, within the set of linear strategies, depends on the problem parameters. Surprisingly, for most problem parameters, a pure linear strategy does not achieve the Stackelberg equilibrium which implies the existence of a trade-off between exploiting and revealing information, which was also encountered in several other asymmetric information games.Comment: will appear in IEEE Multi-Conference on Systems and Control 201

    Signaling equilibria for dynamic LQG games with asymmetric information

    Full text link
    We consider a finite horizon dynamic game with two players who observe their types privately and take actions, which are publicly observed. Players' types evolve as independent, controlled linear Gaussian processes and players incur quadratic instantaneous costs. This forms a dynamic linear quadratic Gaussian (LQG) game with asymmetric information. We show that under certain conditions, players' strategies that are linear in their private types, together with Gaussian beliefs form a perfect Bayesian equilibrium (PBE) of the game. Furthermore, it is shown that this is a signaling equilibrium due to the fact that future beliefs on players' types are affected by the equilibrium strategies. We provide a backward-forward algorithm to find the PBE. Each step of the backward algorithm reduces to solving an algebraic matrix equation for every possible realization of the state estimate covariance matrix. The forward algorithm consists of Kalman filter recursions, where state estimate covariance matrices depend on equilibrium strategies

    Quadratic Multi-Dimensional Signaling Games and Affine Equilibria

    Full text link
    This paper studies the decentralized quadratic cheap talk and signaling game problems when an encoder and a decoder, viewed as two decision makers, have misaligned objective functions. The main contributions of this study are the extension of Crawford and Sobel's cheap talk formulation to multi-dimensional sources and to noisy channel setups. We consider both (simultaneous) Nash equilibria and (sequential) Stackelberg equilibria. We show that for arbitrary scalar sources, in the presence of misalignment, the quantized nature of all equilibrium policies holds for Nash equilibria in the sense that all Nash equilibria are equivalent to those achieved by quantized encoder policies. On the other hand, all Stackelberg equilibria policies are fully informative. For multi-dimensional setups, unlike the scalar case, Nash equilibrium policies may be of non-quantized nature, and even linear. In the noisy setup, a Gaussian source is to be transmitted over an additive Gaussian channel. The goals of the encoder and the decoder are misaligned by a bias term and encoder's cost also includes a penalty term on signal power. Conditions for the existence of affine Nash equilibria as well as general informative equilibria are presented. For the noisy setup, the only Stackelberg equilibrium is the linear equilibrium when the variables are scalar. Our findings provide further conditions on when affine policies may be optimal in decentralized multi-criteria control problems and lead to conditions for the presence of active information transmission in strategic environments.Comment: 15 pages, 4 figure

    On the Fictitious Play and Channel Selection Games

    Full text link
    Considering the interaction through mutual interference of the different radio devices, the channel selection (CS) problem in decentralized parallel multiple access channels can be modeled by strategic-form games. Here, we show that the CS problem is a potential game (PG) and thus the fictitious play (FP) converges to a Nash equilibrium (NE) either in pure or mixed strategies. Using a 2-player 2-channel game, it is shown that convergence in mixed strategies might lead to cycles of action profiles which lead to individual spectral efficiencies (SE) which are worse than the SE at the worst NE in mixed and pure strategies. Finally, exploiting the fact that the CS problem is a PG and an aggregation game, we present a method to implement FP with local information and minimum feedback.Comment: In proc. of the IEEE Latin-American Conference on Communications (LATINCOM), Bogota, Colombia, September, 201
    • …
    corecore