5,832 research outputs found

    Unimodular graphs and Eisenstein sums

    Full text link
    Motivated in part by combinatorial applications to certain sum-product phenomena, we introduce unimodular graphs over finite fields and, more generally, over finite valuation rings. We compute the spectrum of the unimodular graphs, by using Eisenstein sums associated to unramified extensions of such rings. We derive an estimate for the number of solutions to the restricted dot product equation aâ‹…b=ra\cdot b=r over a finite valuation ring. Furthermore, our spectral analysis leads to the exact value of the isoperimetric constant for half of the unimodular graphs. We also compute the spectrum of Platonic graphs over finite valuation rings, and products of such rings - e.g., Z/(N)\mathbb{Z}/(N). In particular, we deduce an improved lower bound for the isoperimetric constant of the Platonic graph over Z/(N)\mathbb{Z}/(N).Comment: V2: minor revisions. To appear in the Journal of Algebraic Combinatoric

    The Quantum Configuration Space of Loop Quantum Cosmology

    Full text link
    The article gives an account of several aspects of the space known as the Bohr compactification of the line, featuring as the quantum configuration space in loop quantum cosmology, as well as of the corresponding configuration space realization of the so-called polymer representation. Analogies with loop quantum gravity are explored, providing an introduction to (part of) the mathematical structure of loop quantum gravity, in a technically simpler context.Comment: 14 pages. Minor changes, typos corrected, 1 reference added. To appear in Class. Quantum Gra

    Projective Techniques and Functional Integration

    Get PDF
    A general framework for integration over certain infinite dimensional spaces is first developed using projective limits of a projective family of compact Hausdorff spaces. The procedure is then applied to gauge theories to carry out integration over the non-linear, infinite dimensional spaces of connections modulo gauge transformations. This method of evaluating functional integrals can be used either in the Euclidean path integral approach or the Lorentzian canonical approach. A number of measures discussed are diffeomorphism invariant and therefore of interest to (the connection dynamics version of) quantum general relativity. The account is pedagogical; in particular prior knowledge of projective techniques is not assumed. (For the special JMP issue on Functional Integration, edited by C. DeWitt-Morette.)Comment: 36 pages, latex, no figures, Preprint CGPG/94/10-

    Non-commutative flux representation for loop quantum gravity

    Get PDF
    The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by *-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.Comment: 12 pages, matches published versio
    • …
    corecore