3,897 research outputs found

    Unsupervised learning of human motion

    Get PDF
    An unsupervised learning algorithm that can obtain a probabilistic model of an object composed of a collection of parts (a moving human body in our examples) automatically from unlabeled training data is presented. The training data include both useful "foreground" features as well as features that arise from irrelevant background clutter - the correspondence between parts and detected features is unknown. The joint probability density function of the parts is represented by a mixture of decomposable triangulated graphs which allow for fast detection. To learn the model structure as well as model parameters, an EM-like algorithm is developed where the labeling of the data (part assignments) is treated as hidden variables. The unsupervised learning technique is not limited to decomposable triangulated graphs. The efficiency and effectiveness of our algorithm is demonstrated by applying it to generate models of human motion automatically from unlabeled image sequences, and testing the learned models on a variety of sequences

    Coalescent histories for lodgepole species trees

    Full text link
    Coalescent histories are combinatorial structures that describe for a given gene tree and species tree the possible lists of branches of the species tree on which the gene tree coalescences take place. Properties of the number of coalescent histories for gene trees and species trees affect a variety of probabilistic calculations in mathematical phylogenetics. Exact and asymptotic evaluations of the number of coalescent histories, however, are known only in a limited number of cases. Here we introduce a particular family of species trees, the \emph{lodgepole} species trees (λn)n0(\lambda_n)_{n\geq 0}, in which tree λn\lambda_n has m=2n+1m=2n+1 taxa. We determine the number of coalescent histories for the lodgepole species trees, in the case that the gene tree matches the species tree, showing that this number grows with m!!m!! in the number of taxa mm. This computation demonstrates the existence of tree families in which the growth in the number of coalescent histories is faster than exponential. Further, it provides a substantial improvement on the lower bound for the ratio of the largest number of matching coalescent histories to the smallest number of matching coalescent histories for trees with mm taxa, increasing a previous bound of (π/32)[(5m12)/(4m6)]mm(\sqrt{\pi} / 32)[(5m-12)/(4m-6)] m \sqrt{m} to [m1/(4e)]m[ \sqrt{m-1}/(4 \sqrt{e}) ]^{m}. We discuss the implications of our enumerative results for phylogenetic computations

    Graph kernels between point clouds

    Get PDF
    Point clouds are sets of points in two or three dimensions. Most kernel methods for learning on sets of points have not yet dealt with the specific geometrical invariances and practical constraints associated with point clouds in computer vision and graphics. In this paper, we present extensions of graph kernels for point clouds, which allow to use kernel methods for such ob jects as shapes, line drawings, or any three-dimensional point clouds. In order to design rich and numerically efficient kernels with as few free parameters as possible, we use kernels between covariance matrices and their factorizations on graphical models. We derive polynomial time dynamic programming recursions and present applications to recognition of handwritten digits and Chinese characters from few training examples

    Computational Complexity of the Interleaving Distance

    Full text link
    The interleaving distance is arguably the most prominent distance measure in topological data analysis. In this paper, we provide bounds on the computational complexity of determining the interleaving distance in several settings. We show that the interleaving distance is NP-hard to compute for persistence modules valued in the category of vector spaces. In the specific setting of multidimensional persistent homology we show that the problem is at least as hard as a matrix invertibility problem. Furthermore, this allows us to conclude that the interleaving distance of interval decomposable modules depends on the characteristic of the field. Persistence modules valued in the category of sets are also studied. As a corollary, we obtain that the isomorphism problem for Reeb graphs is graph isomorphism complete.Comment: Discussion related to the characteristic of the field added. Paper accepted to the 34th International Symposium on Computational Geometr

    Quillen homology for operads via Gr\"obner bases

    Full text link
    The main goal of this paper is to present a way to compute Quillen homology of operads. The key idea is to use the notion of a shuffle operad we introduced earlier; this allows to compute, for a symmetric operad, the homology classes and the shape of the differential in its minimal model, although does not give an insight on the symmetric groups action on the homology. Our approach goes in several steps. First, we regard our symmetric operad as a shuffle operad, which allows to compute its Gr\"obner basis. Next, we define a combinatorial resolution for the "monomial replacement" of each shuffle operad (provided by the Gr\"obner bases theory). Finally, we explain how to "deform" the differential to handle every operad with a Gr\"obner basis, and find explicit representatives of Quillen homology classes for a large class of operads. We also present various applications, including a new proof of Hoffbeck's PBW criterion, a proof of Koszulness for a class of operads coming from commutative algebras, and a homology computation for the operads of Batalin-Vilkovisky algebras and of Rota-Baxter algebras.Comment: 41 pages, this paper supersedes our previous preprint arXiv:0912.4895. Final version, to appear in Documenta Mat
    corecore