958 research outputs found
Global Dynamics of Subsurface Solar Active Regions
We present three-dimensional numerical simulations of a magnetic loop
evolving in either a convectively stable or unstable rotating shell. The
magnetic loop is introduced in the shell in such a way that it is buoyant only
in a certain portion in longitude, thus creating an \Omega-loop. Due to the
action of magnetic buoyancy, the loop rises and develops asymmetries between
its leading and following legs, creating emerging bipolar regions whose
characteristics are similar to the ones of observed spots at the solar surface.
In particular, we self-consistently reproduce the creation of tongues around
the spot polarities, which can be strongly affected by convection. We moreover
emphasize the presence of ring-shaped magnetic structures around our simulated
emerging regions, which we call "magnetic necklace" and which were seen in a
number of observations without being reported as of today. We show that those
necklaces are markers of vorticity generation at the periphery and below the
rising magnetic loop. We also find that the asymmetry between the two legs of
the loop is crucially dependent on the initial magnetic field strength. The
tilt angle of the emerging regions is also studied in the stable and unstable
cases and seems to be affected both by the convective motions and the presence
of a differential rotation in the convective cases.Comment: 23 pages (ApJ 2-column format), 19 figures, accepted for publication
  in Ap
Libration driven multipolar instabilities
We consider rotating flows in non-axisymmetric enclosures that are driven by
libration, i.e. by a small periodic modulation of the rotation rate. Thanks to
its simplicity, this model is relevant to various contexts, from industrial
containers (with small oscillations of the rotation rate) to fluid layers of
terrestial planets (with length-of-day variations). Assuming a multipolar
-fold boundary deformation, we first obtain the two-dimensional basic flow.
We then perform a short-wavelength local stability analysis of the basic flow,
showing that an instability may occur in three dimensions. We christen it the
Libration Driven Multipolar Instability (LDMI). The growth rates of the LDMI
are computed by a Floquet analysis in a systematic way, and compared to
analytical expressions obtained by perturbation methods. We then focus on the
simplest geometry allowing the LDMI, a librating deformed cylinder. To take
into account viscous and confinement effects, we perform a global stability
analysis, which shows that the LDMI results from a parametric resonance of
inertial modes. Performing numerical simulations of this librating cylinder, we
confirm that the basic flow is indeed established and report the first
numerical evidence of the LDMI. Numerical results, in excellent agreement with
the stability results, are used to explore the non-linear regime of the
instability (amplitude and viscous dissipation of the driven flow). We finally
provide an example of LDMI in a deformed spherical container to show that the
instability mechanism is generic. Our results show that the previously studied
libration driven elliptical instability simply corresponds to the particular
case  of a wider class of instabilities. Summarizing, this work shows that
any oscillating non-axisymmetric container in rotation may excite intermittent,
space-filling LDMI flows, and this instability should thus be easy to observe
experimentally
Eddy-Kuroshio interactions : local and remote effects
Author Posting. © American Geophysical Union, 2017.  This article is posted here by permission of American Geophysical Union for personal use, not for redistribution.  The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 9744–9764, doi:10.1002/2017JC013476.Quasi-geostrophic mesoscale eddies regularly impinge on the Kuroshio in the western North Pacific, but the processes underlying the evolution of these eddy-Kuroshio interactions have not yet been thoroughly investigated in the literature. Here this interaction is examined with results from a semi-idealized three-dimensional numerical model and observations from four pressure-sensor equipped inverted echo sounders (PIESs) in a zonal section east of Taiwan and satellite altimeters. Both the observations and numerical simulations suggest that, during the interaction of a cyclonic eddy with the Kuroshio, the circular eddy is deformed into an elliptic shape with the major axis in the northwest-southeast direction, before being dissipated; the poleward velocity and associated Kuroshio transport decrease and the sea level and pycnocline slopes across the Kuroshio weaken. In contrast, for an anticyclonic eddy during the eddy-Kuroshio interaction, variations in the velocity, sea level, and isopycnal depth are reversed; the circular eddy is also deformed to an ellipse but with the major axis parallel to the Kuroshio. The model results also demonstrate that the velocity field is modified first and consequently the SSH and isopycnal depth evolve during the interaction. Furthermore, due to the combined effect of impingement latitude and realistic topography, some eddy-Kuroshio interactions east of Taiwan are found to have remote effects, both in the Luzon Strait and on the East China Sea shelf northeast of Taiwan.Ministry of Science and Technology Grant Numbers: MOST-101-2611-M-002-018-MY3, MOST 103-2611-M-002-011, MOST 105-2119-M-002-042;
    Office of Naval Research. Grant Numbers: N00014-15-12593, N00014-16-13069;
    MHC. Grant Number: MOST-101-2611-M-019-0022018-06-1
Angular Momentum Transport in Stellar Interiors
Stars lose a significant amount of angular momentum between birth and death,
implying that efficient processes transporting it from the core to the surface
are active. Space asteroseismology delivered the interior rotation rates of
more than a thousand low- and intermediate-mass stars, revealing that: 1)
single stars rotate nearly uniformly during the core hydrogen and core helium
burning phases; 2) stellar cores spin up to a factor 10 faster than the
envelope during the red giant phase; 3) the angular momentum of the
helium-burning core of stars is in agreement with the angular momentum of white
dwarfs. Observations reveal a strong decrease of core angular momentum when
stars have a convective core. Current theory of angular momentum transport
fails to explain this. We propose improving the theory with a data-driven
approach, whereby angular momentum prescriptions derived from multi-dimensional
(magneto)hydrodynamical simulations and theoretical considerations are
continously tested against modern observations. The TESS and PLATO space
missions have the potential to derive the interior rotation of large samples of
stars, including high-mass and metal-poor stars in binaries and clusters. This
will provide the powerful observational constraints needed to improve theory
and simulations.Comment: Manuscript submitted to Annual Reviews of Astronomy and Astrophysics
  for Volume 57. This is the authors' submitted version. Revisions and the
  final version will only become available from
  https://www.annualreviews.org/journal/astr
The upper-atmosphere extension of the ICON general circulation model (version: Ua-icon-1.0)
How the upper-atmosphere branch of the circulation contributes to and interacts with the circulation of the middle and lower atmosphere is a research area with many open questions. Inertia-gravity waves, for instance, have moved in the focus of research as they are suspected to be key features in driving and shaping the circulation. Numerical atmospheric models are an important pillar for this research. We use the ICOsahedral Non-hydrostatic (ICON) general circulation model, which is a joint development of the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD), and provides, e.g., local mass conservation, a flexible grid nesting option, and a non-hydrostatic dynamical core formulated on an icosahedral-triangular grid. We extended ICON to the upper atmosphere and present here the two main components of this new configuration named UA-ICON: an extension of the dynamical core from shallow- to deep-atmosphere dynamics and the implementation of an upper-atmosphere physics package. A series of idealized test cases and climatological simulations is performed in order to evaluate the upper-atmosphere extension of ICON. © Author(s) 2019
- …
