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Preface

The Energy Research Project ”Program for Research in Applied Aeroelasticity, EFP-2007”
was carried out in cooperation between the two institutes atTechnical University of Denmark
(DTU), Risø National Laboratory of Sustainable Energy (Risø DTU) and the Department of
Mechanical Engineering (DTU MEK), from 1 April 2007 to 31 March 2008. From the onset of
the project, six milestones were defined which represent themain part of the research activity.
Apart from the work focused on the milestones, also analyzesof current problems and further
development of the existing models were carried out.

Several researchers at DTU MEK and Risø DTU have been involved in the project work and
have contributed to the research presented in this report. To enable reference to the different
parts of the report, the names of the authors are indicated for each chapter. It should, however,
be emphasized that the report is not a detailed report of the complete activity within the project.
Thus, not all of the contributors to the project appear as authors to the different chapters. For a
detailed description of the results from the project, please see Chapter 9 in which a complete
list of publications in the project can be found.

At the DTU MEK, the following researchers from the Fluid Mechanics Section of the Depart-
ment of Mechanical Engineering have been involved in the project:

Kurt S. Hansen
Martin O.L. Hansen
Gabriel Hernandez
Robert Mikkelsen
Wen Zhong Shen
Jens Nørkr Sørensen
Niels Troldborg
Stig Øye

At Risø DTU, primarily the researchers from the AeroelasticDesign Group have contributed
to the project:

Peter B. Andersen
Christian Bak
Andreas Bechmann
Franck Bertagnolio
Thomas Buhl
Mads Døssing
Mac Gaunaa
Anders M. Hansen
Morten H. Hansen
Jeppe Johansen
Bjarne S. Kallesøe
Gunner C. Larsen
Torben J. Larsen
Helge A. Madsen
Helen Markau
Flemming Rasmussen
Niels N. Sørensen
Frederik Zahle
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1 Summary

This report contains the results from the Energy Research Project ”Program for Research in Ap-
plied Aeroelasticity, EFP-2007” covering the period from 1. April 2007 to 31. March 2008. The
partners in the project are the two institutes at Technical University of Denmark (DTU), Risø
National Laboratory of Sustainable Energy (Risø DTU) and the Department of Mechanical
Engineering (DTU MEK). The overall objectives of the project are to ensure the development
of an aeroelastic design complex, which can create the basisfor the next generation of wind
turbines and make new design concepts possible. The projectforms a strategic cooperation be-
tween Risø DTU and DTU MEK and the wind turbine industry with emphasis on obtaining a
suitable balance between long-term strategic research, applied research and technological de-
velopment. To obtain synergy between the different subjects and to ensure an optimal, dynamic
cooperation with the industry, while maintaining the continuity of the research, the project is
organized as a research program within applied aeroelasticity with a combination of research
activities with specific short-term targets within one yearand general continuous long-term re-
search activities. This research project has been the tenthin a row of one-year projects, which
has ensured a continuous development since 1997, where the activity in this row of projects is
described in [1], [2], [3], [4], [5], [6], [7], [8] and [9].

1.1 Main results from the project

The main emphasis of the activity in the project was put on themilestones which were defined
in the project proposal. Furthermore, there has been activity on the further development of tools
and models in ”the aeroelastic design complex” which consists of 3D Navier-Stokes models,
aeroacoustic models, airfoil- and blade design, aeroelastic codes and loads, aeroelastic stability,
control and new concepts. Also, there have been investigations of subjects of fundamental
character, which often constitute long-term research. A summary of the main results for each
milestone from the project is given in the following.

1.1.1 Validation and further development of aerodynamic induction modeling

The distribution of axial induction near the tip of a Betz optimal loaded actuator disc has been
investigated using five different computational tools. Theloading is in itself singular at the edge
of the actuator disc and the corresponding computed inductions shows comparable behavior
near the tip. All the considered methods captures the trend in increased induction towards the
tip, and slightly lower induction inboard resulting in averaged level for the whole disc close to
axial momentum theory,a=1/3. The streamfunction-vorticity model and the distributed vortex

The tip part of
wind turbine
rotors were in-
vestigated e.g. to
compare different
computational
methods.

sheet model compare very closely to each other for the Betz optimal loading. Loadings with a
more smooth transition to zero at the tip, reduced the observed peak for the constant loading
considerably although the inboard induction remains virtually unaffected.

1.1.2 Modeling of flow interaction between rotor, tower and nacelle

In the work package ”Modeling of flow interaction between rotor, tower and nacelle” a number
of CFD simulations have been carried out on the Siemens 3.6MWwind turbine for various flow
situations. The influence of shear on the rotor loads was investigated, and it was found that the
azimuthal variation of the load gave rise to some hysteresisin the axial and tangential forces.
The integrated rotor thrust and power were largely identical to simulations carried out with
uniform inflow. The influence of tower shadow has been investigated for two flow cases, one
with and another without inflow shear. Generally, the CFD results predicted the tower shadow
by as much as 50% different compared to BEM computations, which gives cause for further
investigation. Even though the nacelle was not included in the simulations the flow in the

3D CFD com-
putations were
carried out to
investigate shear,
tower shadow
and nacelle flowRisø–R–1649(EN) 7



region of the nacelle anemometer was investigated, and it was found that the measured flow
angle in the wake differed by as much as 7◦ relative to the freestream flow angle. As such, for
the flow case where the turbine operated in 10◦ yaw error, the flow angle in the wake of the
turbine measured on average 0◦, giving a possible explanation to the apparently consistent yaw
error observed in the Høvsøre experiment. Investigation ofthe wake development downstream
of a turbine operating in shear inflow showed that a rotation in the wake gave rise to significant
mixing of the low velocity flow from the bottom half of the wakeinto the top half. Additionally,
for the flow with large wind direction changes with height, the wake was largely dissolved only
three diameters downstream of the turbine.

1.1.3 Mapping of 3D effects and modeling of laminar-turbulent transition in bound-

ary layers on rotating blades

A series of computations were made using the commercial CFD code FLUENT on a rotating
blade in order to investigate 3-D effects originating mainly from Coriolis and centrifugal forces.
The blade was confined between two concentric cylinders, where a slip boundary condition
was applied that allowed a tangential velocity but no normalvelocity. This is basically a wall
boundary condition for an inviscid flow. Further, the inlet boundary condition was specified so
that the geometrical angle of attack was the same along the entire blade. The main conclusion
is that as long as the flow remains attached there is little difference between 2-D and 3-D flow.
However, at separation an increased lift is observed close to the rotational axis. For a ratio

As long as the
flow remains at-
tached there is lit-
tle difference be-
tween 2-D and 3-
D flow

between radius and chord, r/c, of 3.2 the computed lift coefficient as a function of the angle
attack is compared to a 2-D calculation and the same 2-D data corrected for 3-D effects using
empirical models. It appears that for this position the 3-D correction underestimates the 3-D
effects. The work is still in progress, however a tool has been developed that can be used to
investigate some of the assumptions made in quasi 3-D codes and to compare and tune existing
stall delay models.

Apart from investigating the 3D effects also modeling of laminar-turbulent transition in bound-
ary layers on rotating blades has been investigated. A correlation based transition model has
been implemented in the incompressible EllipSys2D/3D Navier-Stokes solver. Based on a se-
ries of zero pressure gradient flat plate boundary layers, expressions for the two missing cor-
relation functions have been determined. Next, the model has been used to predict the lift and
drag for two wind turbine airfoils, the S809 and NACA63-415 respectively. Both computations
show good agreement and distinct improvement in the drag predictions compared to using fully
turbulent computations. The model was used to successfullypredict transition on a 6:1 prolate

CFD computa-
tions using a new
transition model
show good agree-
ment and distinct
improvement in
the drag predic-
tions compared
to fully turbulent
computations

spheroid at zero degrees incidence for four different Reynolds numbers, while the model due
to lack of cross-flow by-pass transition capability was not able to predict the correct location of
transition for the spheroid at 30 degrees incidence. The model was finally applied to the well
known NREL Phase-VI rotor, corresponding the the upwind cases from the original blind com-
parison. It was shown how the transition model, through variation of the intensity of the inflow
turbulence could improve the prediction around stall, while the low wind speed and high wind
speed regions were nearly unaffected by the transition model. Generally, one must expect that
the transition process can be very important for predictingthe correct aerodynamics of rotors
depending on rotor design and airfoil shape, and that the present model can be a valuable tool.

1.1.4 Modeling and optimization of structural couplings in aeroelastic computa-

tions

The work made under this milestone is not reported this year,but the work is continued in the
new EFP-2007-II project. During the project, the necessarybuilding blocks have been collected
in order to implement the anisotropic beam element, VABS, into the aeroelastic code, HAWC2,
and the actual implementation should now be straight forward. Further, emphasis have been

A VABS model
has been de-
veloped for
implementation
in the aeroelastic
code HAWC2

put on understanding how the structural behaviour of the blades should be changed in order to
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improve the aeroelastic response of the wind turbine. When those two tasks have been finalised,
conclusions will be made and reported as part of the EFP-2007-II project.

1.1.5 Comparisons of design methods for wind turbines in wake

A new implementation of the Dynamic Wake Meandering (DWM) model has been demon-
strated, where all wake sources from the neighboring turbines are included. Production cases
have only been considered and ambient turbulence corresponding to a terrain class IC (high
wind, low turbulence) has been applied. A comparison of loads between turbines with a row
distance of 3 and 8 diameters (3D and 8D), respectively has been investigated with the DWM
model and the method according to the IEC 61400-1 ed 3. standard. The simulations performed
for very low wind speeds (<8m/s) were however excluded in the analysis due to convergence
problems when negative wind speed occurred on the downstream rotor, which is considered to
be of minor importance to the results.

When comparing the loads between the 3D and 8D configuration,the turbine at the 3D con-
figuration never experiences any free flow situation. Another interesting observation is that the
tower loads seem more affected at longer downstream positions than when turbines are close to
each other. This effect is addressed to the meandering effect causing higher states of full, half
and no wake situation when the meandering has had time to develop.

In the direct comparison between the DWM and the IEC model forthe 3D case, the IEC model
seems conservative regarding fatigue and extreme loads forthe yaw, driving torque and flapwise
bending, whereas the loads on tower and blade torsion are non-conservative. The maximum

Comparing
DWM and IEC,
the IEC model
seems conser-
vative regarding
fatigue and ex-
treme loads for
the yaw, driving
torque and flap-
wise bending,
whereas the loads
on tower and
blade torsion are
non-conservative.

tower bending is 20% higher for the DWM model and 55% higher for the blade torsion moment.

For the 8D case, the comparison shows a generally good agreement between the two models
regarding yaw, driving torque and flapwise blade bending with deviances in the order of 10%.
However, for the tower loads and blade torsion a significantly higher load level is seen with the
DWM model. Regarding tower loads the fatigue level is 25% higher with the DWM model and
the maximum bending moment is 60% higher than for the IEC model. A similar difference is
also seen for the blade torsion.

1.1.6 Aero-servo-elastic pitch dynamics for blades with large deflections

The modal dynamic of a beam with a large static deflection are analyzed with three different
structural beam models. The coupling between bending and torsion, caused by the deflec-

Assuming large
deflections shows
no significant
change of the
flutter limit on
the rotor speed,
whereas the
first edgewise
bending mode
becomes nega-
tively damped
due to the cou-
pling with blade
torsion.

tion and predicted by the three different models are seen to agree qualitatively, except of the
edgewise bending component in the torsional mode.

The effects of large bending deflections under steady state operation of the wind turbine blade
on its stability limits, especially with regards to the flutter limit, are analyzed. The investigation
shows no significant change of the flutter limit on the rotor speed due to the blade deflection,
whereas the first edgewise bending mode becomes negatively damped due to the coupling
with blade torsion which causes a change of the effective direction of blade vibration. These
observations are confirmed by nonlinear aeroelastic simulations using HAWC2.

Next, the effect of a free-play in the pitch system is analyzed. A linear pitch bearing stiffness

The flutter speed
decreases when a
free-play in the
pitch bearing is
introduced.

with a free-play is imposed on a 2D wing-section model. The pitch system model and the wing-
section model are combined and simulated in time to determine the relative inflow speed where
flutter onsets. It is found that this flutter speed decrease when a free-play is introduced.

Risø–R–1649(EN) 9



1.1.7 Wind tunnel tests of new airfoil series

Three airfoils were tested in the LM Glasfiber wind tunnel to investigate 1) transition from
laminar to turbulent flow in the airfoil boundary layer, 2) the Risø DTU airfoil design method-
ology and 3) the inflow characteristics at small turbulent length scales and the influence on air-
foil performance. A technique using surface mounted microphones were developed and used
where frequencies between 30Hz and 20kHz were measured. Together with the microphones

Three airfoils
were tested and
microphones
were surface
mounted and
measured transi-
tion.

the airfoil models had pressure taps to measure the aerodynamic characteristics in terms of
the pressure distributions that were integrated to lift, drag and moment. Also, the drag was
measured using a wake rake. To investigate the influence of inflow turbulence on airfoil perfor-
mance two different grids were mounted upstream of the airfoil.

A large amount of microphone data has been processed with reference to transition detection
and selected results are presented. All results show expected values and the method for transi-
tion detection is well established. The only drawback in themethod is uncertainty with respect
to the accuracy of the detected values near the leading edge.In all cases transition is clearly
observed and also the onset of instability as well as the distance over which transition develops.

The design of the Risø-C2-18 airfoil was verified in the wind tunnel and showed that the de-
sign criteria were fulfilled. Thus, the airfoil with clean surface showed the characteristics as
predicted with the flow simulation tools, however with a slightly lower maximum lift. For ex-
ample the fast movement of the transition point at aroundcl = 1.7 showed to be predicted
well by theen model in the flow simulation tool XFOIL. Also, an unavoidablebut acceptable

The Risø-C2-18
airfoil was tested
and showed to
be in agreement
with the design
objectives which
were e.g. high
maximum lift,
high lift-drag
ratio and a high
degree of rough-
ness insensitivity

loss in maximum lift was seen which was at its highest up to∆cl =0.15. Furthermore, it was
as expected seen that the drag was not resistant to leading edge roughness and an increase in
both maximum lift and drag were seen. Testing the airfoils with different turbulence intensity
showed an increase in drag and an increase in maximum lift compared to the tests at lower
turbulence intensity.
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2 Analysis of induction near tip

Author: Robert Mikkelsen, Helge A. Madsen, Martin Hansen, Wen Z. Shen, Stig Øye

This section seeks to analyze the behavior of the induction near the tip of a Betz optimal
loaded actuator disc. Several axi-symmetric methods are applied in analyzing the variation of
the axially induced velocities towards the edge of the actuator disc. The purpose of the analysis
is to quantify the difference between models and compare to simple axial momentum theory,
which forms the foundation of BEM methods.

2.1 Rotor aerodynamic modeling

Accurate prediction of the induced velocities along the turbine blades, is a key factor in ap-
proaching optimally aerodynamically loaded turbines. Both for extracting the maximum en-
ergy of the incoming wind and in general to be able to perform accurate predictions of turbine
performance. Aerodynamic modeling using BEM-methods assumes radially independency of
the annular stream tubes passing through the turbine rotor.Thus, assuming a loading of con-
stant level results in a corresponding constant level of induction. However, due to the expanding
streamlines near the rotor the axial induction increases towards the tip region whereas near the
root section the higher swirl component in the wake tends to reduce the axial component of
induction, see [1]. These effects may be investigated with more advanced aerodynamic mod-

Five different
tools have been
used for com-
parison of the
predicted rotor
aerodynamics.

els like CFD or vortex models. In order to limit the investigation, the present work is focused
on the detailed behavior of the flow field around an axi-symmetric actuator disc loaded with
constant normal loading at Betz optimal condition,CT=0.89. The study is aimed at describ-
ing and quantifying these effects which could lead to simplecorrections for improving BEM
methods. In order to broaden the picture of the investigation, the capabilities of five different
tools presently in use for research, are presented in the following with the aim of comparing
the features of the Betz optimally loaded actuator disc. Themethods are:

• Streamfunction-Vorticity, (CFD type)

• EllipSys2D Axi-symmetric, (CFD type)

• FIDAP, (CFD type)

• Vortex sheet, Inviscid, (singular element type)

• Vortex lines, 3D inviscid (singular element type)

A short description of the listed methods are given in the following.

2.1.1 CFD modeling of the wake

The three considered CFD models solve the axi-symmetric Navier-Stokes equations in the
meridional plane by inserting an actuator disc representedby a line. The computational grids
are in all cases simple rectangular/Cartesian type grid with most computational cells concen-
trated around the disc, with cells stretching towards the far field boundaries. The three methods
handles the solution of the problem in hand differently, butfrom a mathematically point of view
there should be a unique solution to this problem, however, in the numerically representation
deviations are unavoidable. With the Streamfunction-Vorticity formulation [2] [3] mass conser-
vation is ensured identically whereas EllipSys2D and FIDAPare based on primitive variables.
The EllipSys2D was extended by W. Shen to cope with axi-symmetry conditions and FIDAP is
a commercial software package. The present investigation seeks to make an inviscid analysis of
the problem, however, due to numerical diffusion and in order to stabilize the solution process,

Risø–R–1649(EN) 11



viscous diffusion is added. An effective Reynolds number Re=RV/ν of 10.000-50.000 ensures
almost independent solution of the viscosity.

2.1.2 Vortex sheet modeling of the wake

A distribution of vortex rings is used to form a vortex sheet of the wake, shed from the actuator
disc, elegantly solving the inviscid flow field around a constant loaded actuator disc, see Øye[4].
Figure 1 depicts a sketch of a single ring vortex element and the vortex sheet modeled by a
distribution of vortex rings. An analytical inviscid solution to the single vortex ring element

Figure 1. Vortex ring element (left) and an actuator disc wake of distributed of vortex ring
elements (right).

exists, where the induced velocities(Wx,Wy) are given by

Wx =
Γ
2π

1√
x2 +(y+a)2

(
a2−x2−y2

x2 +(y−a)2E(k)+K(k)

)
(1)

Wy =
Γ
2π

x

y
√

x2 +(y+a)2

(
a2 +x2 +y2

x2 +(y−a)2E(k)−K(k)

)
(2)

and whereE(k) andK(k) are given by the elliptic integrals

k =

√
4ay

x2 +(y+a)2 , y≥ 0 (3)

E(k) =
∫ π

2

0

dθ√
1−k2sin2 θ

, K(k) =
∫ π

2

0

√
1−k2sin2 θdθ (4)

Thus, the wake is discritisized by a distribution of ring vortex elements where the strengthΓi

of each element depends on the thrustCT as

γi = CT
U2

2Va,i
, Γi = (γi−1 + γi)dx , Va,i = U +

1
2

(
Wr+dr

x +Wr−dr
x

)
, dr ≃ 0.1R (5)

and the expansion of the wake is given by

r i = R

√
Vx=0

r=0.7R

Vxi
r=0.7r i

or r i = R

√
V

x=0

V
xi

(6)

where the first term is an approximation or a best guess of a representative velocity ensur-
ing mass conservation at all axial section. The correct way to compute the expansion involves
computing the average velocity given by the second term, however, this is far more time con-
suming in the iterative solution process of relaxing the wake. Numerically, the wake lengthL
is resolved by elements about 10-20Rdownstream. A far wake correction given by

W f arwake
x =

(
1+

L/r√
1+L/r

)
γn

2
(7)

ensures that the wake stretches to infinity.

12 Risø–R–1649(EN)



2.1.3 Vortex line modeling

Using vortex lines elements, the trailing vortices from theturbine blades are resolved by vortex
elements either as a prescribed wake or as a free wake, the later being far more computational
demanding. A prescribed wake modeling is used in the following for resolving the trailed tip
and root vortices and the bound blade vortices of the three turbine blades. It should be noted
that the wake is relaxed as with the ring vortex method, thus,the expansion is a part of the
solution. Figure 2 outlines the wake geometry. Computing induced velocities is based on the

X

Y

Z

Figure 2. Vortex line representation of three blades turbine wake. The expansion of the pre-
scribed wake is based on a representative azimuthal averagevelocity at r= 0.7r i and the lines
are loaded to CT =0.89. Tip speed ratiosλ = 3,6,9 are analyzed.

Biot-Savart law given by

W =
Γ
4π

∮
ds× r

|r |3
(8)

where the strength approximately may be computed as

Γ = CT πRU(1−a)/λ , λ = RΩ/U (9)

with a representing the axial interference factor. Some deviation is to be expected since, as
compared to the other models, this is a genuine 3D approach.

2.2 Changed induction towards the tip

Figure 3 depicts the computed flow field represented by streamlines in the axi-symmetric plane
around an actuator disc,CT =0.89 using the streamfunction vorticity method. Near the edge of
the actuator disc the streamlines are curved or bend resulting in changed induction compared
to the inboard region. The behavior of this effect is captured by all the considered methods.
The axial induction on non-dimensional form referred to as axial interferencea, is displayed in
figure 4. The well known result from axial momentum theory predicts a value ofa=1/3 for this
loading, which compares well with average values for the depicted distribution i.e. the slightly
lower inboard level is compensated for by the higher level outboard. The computed level agree
inboard nicely within few percents, but in the tip region deviation are larger. All methods predict
significant increased axial interference in the tip region with max levels around 0.4, although
FIDAP predicts a somewhat higher maximum value. The close upshown outboard compar-
ing streamfunction-vorticity with vortex rings modeling reveal a spot on comparison for this
case showing that two very different methods computes nearly the exact same distribution of
induced velocities. The values inserted near the tip, referto the numerical resolution of the

The predicted
induced veloc-
ities compared
well between the
different models
on the inner part
of the rotor, but
close to the tip
the deviations be-
tween the models
are large.

disc i.e. 160 equidistant cells for the streamfunction-vorticity computations and 80 points us-
ing the ring vortex method to compute the average velocity across each axial plane. Looking
at the radial velocity component in figure 5, the velocity increases gradually from the root to
a peak value aroundVr/Vo=0.4-0.6 at the tip. The comparison with EllipSys2D is generally
good and only at the very tip significant difference are apparent. The singular behavior inher-
ent in the solutions at the tip for the constant loading, appear more clear for the radial velocity
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Figure 3. Axi-symmetric view of expanding streamlines through and around a constant loaded
actuator disc, CT =0.89. The symmetry line is at the bottom.
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Figure 4. Axial interference computed with Streamfunction-Vorticity, EllipSys2D using the SIM-
PLE and SIMPLE-C coupling, FIDAP and the ring vortex model.
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Figure 5. Radially induced velocity due to expansion of the streamlines.

although the same behavior is present for the axial interference. The expansion of the wake
is presented in figure 6 showing the limiting streamline passing through the edge of the disc.
The predictions at an axial position of 10R downstream vary roughly between 1.33-1.38R. The
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Figure 6. Wake expansion, limiting streamline through edgeof actuator disc.

trend among the different computation appears to be the sameapart from the vortex line model,
which follow a different path with a higher rate near the disc, leveling off comparable to the
other methods. A difference in behavior was expected as noted previously regarding the vortex
line model compared to the other models. The comparison of the expansion rate in itself should
be considered of limited importance, as an actual turbine wake generally not will be preserved
as long as 10R downstream. It is although, a good indicator ina code to code comparison.
Figure 7 presents the expansion and axial interference computed with the vortex line method.
The trend is comparable to the actuator disc results with an increased induction towards the
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Figure 7. Vortex line modeling of the wake. Expansion (left)and axial interference at the disc
and in the wake (right).

tip, however, the averaged level at the rotor plane is arounda=0.36 or 10% above 1/3, although
in the far wake levels at z=10R downstream, settles close to a=2/3 in good accordance with
axial momentum theory. In the view of the idealized optimal loading of Betz, one should keep

Inspecting the
expansion of the
wake is a good
indicator in a
code to code
comparison of
the predicted
flow fields.

in mind that actual loadings do not have the singular type behavior, but tend to have a more
or less smooth transition to a zero loading near the tip. The effect of increased induction may,
however, still be present when applying a smooth de-loadingat the tip. Figure 8 presents an
artificial type loading which decreases smoothly towards zero using a simple polynomial. The
two considered loadings compared to the Betz optimum, clearly reduces the induction at the
tip, however, inboard the induction appears unaffected.
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Figure 8. Effects of smooth load reduction towards the tip (left) and corresponding induction
near the tip (right).

2.3 Summary

The distribution of axial induction near the tip of a Betz optimal loaded actuator disc has been
investigated using five different computational tools. Theloading is in itself singular at the edge
of the actuator disc and the corresponding computed inductions shows comparable behavior
near the tip. All the considered methods captures the trend in increased induction towards the

All the consid-
ered methods
for prediction
of rotor aerody-
namics captures
the trend in in-
creased induction
towards the tip,
and slightly
lower induction
inboard.

tip, and slightly lower induction inboard resulting in averaged level for the whole disc close to
axial momentum theory,a=1/3. The streamfunction-vorticity model and the distributed vortex
sheet model compare very closely to each other for the Betz optimal loading. Considering the
loadings with a more smooth transition to zero at the tip, reduced the observed peak for the
constant loading considerably although the inboard induction remains virtually unaffected.
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3 The Influence of Wind Shear and Tower Pres-

ence on Rotor and Wake Aerodynamics Us-

ing CFD

Author: Frederik Zahle, Niels N Sørensen and Helge Aagaard Madsen

This chapter describes a number of flow simulations on a modern wind turbine, where aspects
such as the influence of wind shear, interaction between the rotor and tower and the nacelle
and wake aerodynamics are investigated. In the simulationsthe actual geometry of the rotor
and tower are resolved together with a fixed ground boundary.The simulations show that the
azimuthal variation of the forces on the rotor operating in shear flow gives rise to some hystere-
sis effects that are very dependent on the nature of the shear. The power production is largely
equal for simulations with and without shear. The simulations furthermore show that the effect
of tower shadow is generally underpredicted compared to theBEM methods by as much as
100%. The nature of the flow in the nacelle region is highly unsteady with flow angles fluctu-
ating by approximately±20◦. The rotation in the wake gives rise to a bias in the prediction of
the flow angle in this case of about 10◦. The wake development is strongly dependent on the
freestream conditions, and for a case with strong shear and directional change in the vertical
direction the wake is largely disintegrated three rotor diameters downstream.

3.1 Introduction

In Research in Aeroelasticity EFP-2006 [2] an investigation was carried out into the influence
of wind shear on rotor aerodynamics using Computational Fluid Dynamics (CFD) and Blade
Element Momentum (BEM) models. The study showed that the modelling of this flow case is
not straightforward, and a comparison of the advanced flow models with various BEM imple-
mentations did not give any conclusive answers to the correct method to be used. In this year’s

CFD simulations
are used to inves-
tigate the effect
of shear, tower
shadow and na-
celle and wake
aerodynamics

Research in Aeroelasticity EFP-2007, this work has been continued and another computational
approach has been taken that allows to include the ground boundary more directly in the com-
putations, while still modelling the actual geometry of therotor.
Another topic that is also relevant to address with complex flow models is that of tower shadow,
since little validation with CFD has been carried out previously. Although tower shadow usu-
ally only gives rise to fluctuations in the power of less than five percent, it is still important in
order to capture the aeroelastic charactistics of the turbine correctly.
A third issue that is relevant is the aerodynamics in the nacelle region where instruments are
placed to measure rotor yaw and flow speed. This problem has previously been addressed com-
putationally and experimentally, and has primarily been focused around the estimation of the
wind speed and less so on the estimation of the flow angle. As such, further work is needed to
improve the understanding of the flow characteristics in this region.

This chapter will thus focus both on the continued investigation into the influence of the veloc-
ity shear on the turbine aerodynamics, as well as on of this year’s mile stones, namely that of
the interaction between rotor, tower and nacelle. In 2007, measurements on a Siemens 3.6MW
turbine were carried out at Høvsøre Test Station in northernJutland, where a Pitot tube was
mounted at 36 m radius measurering all three velocity components. This turbine was therefore
used in the present work since the experimental data was of high quality and could be used for
validation of numerical flow solvers. Details of the experiment can be found in [1].

Three computations have been carried out for this work: one where the inflow is uniform, and
two where a given velocity shear is prescribed. Both shears are equivalent to shear profiles that
occur at night time, that can have very high vertical velocity gradients and where the ambient
turbulence level is very low due to stratification. The first shear is defined from a power law
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and has no directional change in the vertical direction. Thesecond shear is extracted from
the measurements at Høvsøre, and has a strong turning of the flow up through the boundary
layer. Although very severe, these types of shears are quitecommon and therefore represent

Shear profiles
used in simula-
tions are based
on measurements
at Høvsøre Test
Station

an important flow case in wind turbine aerodynamics.

Simulations of the type presented in this chapter are quite new in the field of wind turbine
aerodynamics. In traditional Computational Fluid Dynamics (CFD) computations on wind tur-
bine rotors non-uniform inflow conditions are rarely included due to the high computational
cost. Also, including the tower and ground boundary is not normally done due to the added
complexity needed in the code. Flow over isolated wind turbine rotors has been investigated
extensively using CFD [see for example 3–7, 16–18]. More recently, Sørensen and Johansen
[15] computed the flow over the rotor designed in connection with the UPWIND project op-
erating in strongly sheared inflow, and showed that considerable hysteresis effects are present
due to the non-uniform loading of the rotor. In the in-house Navier-Stokes flow solver Ellip-
Sys3D [9, 10, 13] it has so far only been possible to compute the flow around an isolated rotor.
Recently, Zahle [19] extended the code such that this relative movement could be modelled
directly providing the basis for simulating the unsteady flow in a domain where the rotor is
allowed to move relative to a stationary ground boundary.

This chapter is divided into six sections: firstly, the computational methods are described; sec-
ondly, the computational domains used in the simulations are discussed; thirdly, the results
regarding the influence of shear, tower shadow modeling and nacelle aerodynamics are pre-
sented; and finally a discussion and conclusion summarises the findings.

3.2 Computational Methods

3.2.1 Base Solver

For all computations the EllipSys3D pressure based incompressible Reynolds averaged Navier-
Stokes flow solver written by Michelsen [9, 10] and Sørensen [13] is used. The code uses the
finite volume method, solving for the primitive variablesu,v,w, and p, in general curvilinear
coordinates. The variables are stored in a collocated grid arrangement, and odd/even pressure
decoupling is avoided using the Rhie-Chow interpolation [11]. The iterative SIMPLE or PISO
algorithm is used to advance the solution in time using a second-order accurate scheme. The
convective terms are discretised using the Quadratic Upstream Interpolation for Convective
Kinematics Scheme, QUICK, and the viscous terms are discretised using the central difference
scheme. The momentum equations are solved decoupled from each other using a red/black
Gauss-Seidel point solver. To accelerate the convergence of the pressure-correction equation a
multigrid solution strategy is implemented combined with the additive Schwarz method, where
each sub-domain is solved for simultaneously.

The code is fully parallelised using the MPI library with a multiblock decomposition of the so-
lution domain. The block-block communication is done through one layer of ghost cells around
each block. The cell vertices are required to coincide on interfaces such that conservation can
be maintained.

For computations of flow over aerofoils and wind turbine blades the EllipSys3D code uses the
k−ω SST model by Menter [8], because of its good performance in wall bounded adverse
pressure gradient flows.

3.2.2 The Overset Grid Method

The overset grid method, also known as chimera or composite grid method, addresses many of
the limitations of traditional structured grid methods, while at the same time maintaining their
advantages such as solution strategies and parallelisation. The method allows for the decom-
position of the problem into a number of simpler grids, whichoverlap each other arbitrarily. If
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dealing with a multibody problem, appropriate body-fitted grids can be generated around each
component, making it possible to model virtually any configuration. Since each body grid is
independent of the other grids, problems involving relative movement of bodies are naturally
handled.

The overset grid
method allows
for simulations
involving relative
movement of
componentsImportant flow features can be resolved by refined meshes, which together with the body fitted

meshes can be embedded in background meshes that are successively coarsened towards the
farfield where there is no need for high resolution of flow features. To accommodate the solid
bodies and refined grids, cells are removed from the background grids where necessary.

In the present implementation by Zahle [19] each group of simply connected blocks is solved
using boundary conditions on the overlapping interfaces based on interpolated values of ve-
locity from neighbouring grids using trilinear interpolation. Since this interpolation is non-
conservative, the lack of mass conservation must be addressed. An explicit correction of the
conservation error is implemented, since a divergence freefield is required to solve the pressure-
correction equation. The correction is placed in internal cells along the overset boundaries and
is distributed proportionally to the local mass flux. As stated above, only velocities are inter-
polated, since interpolation of velocities and pressure would lead to an ill-posed problem. The
solution of the pressure is thus obtained on the basis of the mass fluxes calculated from the
momentum equations.

The additional cost associated with the overset grid methodis caused by the need for deter-
mining the connectivity between each block group and communication of boundary conditions
between these groups. In EllipSys3D the connectivity routines are fully parallelised and apply a
stencil jumping technique to locate cells. Likewise, the communication of flow field data must
be carried out in a parallel manner. To minimize communication latency, non-blocking MPI
calls are used to transfer information between individual processors.

Thek−ω SST model has not yet been implemented for use on overset grids, since it requires
the specification of two zonal functions that are computationally heavy to evaluate on moving
overset grids. As such, only the originalk−ω model can be used.

3.3 Computational Setup

The model of the Siemens 3.6MW turbine used in the present simulation is simplified compared
to actual geometry. Firstly, the model does not include the nacelle since this would complicate
the grid generation, and as the first step would be too time consuming to set up. Secondly, the
rotor has no coning or tilt due to the fact that the overset version of the code at present can
only handle rotation around the z-axis. Finally, the turbine is assumed to be completely rigid,
since the flow solver is not capable of handling multibody dynamics. As such an approximate
tower clearance was estimated from aeroelastic simulations using HAWC2. Figure 9 shows the
turbine configuration and lists the overall dimensions of the turbine.

In the experiment a pitot tube was placed at a radius of 36 m on one of the blades. Likewise,
a probe was placed in the computational domain at the same position. Additional probes were
placed along the blade and three probes were placed in the approximate position where the
nacelle anemometer is placed. Figure 10 shows the location of all nine probes.

In contrast to the standard patched multiblock approach that uses O-O grids commonly used
for rotor computations, the overset grid method can handle the relative movement between the
rotor, tower and ground boundary . In this work a topology with five overlapping mesh groups

The overset grid
method can han-
dle the relative
movement be-
tween the rotor,
tower and ground
boundary.

is used; one curvilinear on the rotor, another curvilinear grid around the tower, a Cartesian
grid resolving the tower wake, a semi-cylindrical domain resolving the near-wake, and another
semi-cylindrical domain for the farfield. This layout results in an efficient use of grid cells,
and ensures good compatibility along the overset boundaries. The mesh for the three blades
on the rotor contain 256×128×64 cells in the chordwise, spanwise, and normal directions,
respectively, with a 64×64 cells ’tip’ cap. To achievey+ values of less than 2 the height of
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Siemens 3.6MW Dimensions

Rotor Diameter 107 m
Hub Height 90 m
Tower Diameter top 3.0 m
Tower Diameter bottom 4.5 m
Tower Clearance 9.0 m

Figure 9. Main dimensions and axis definitions of the Siemens3.6MW turbine.

Figure 10. Positions of the velocity probes in the simulations.

the first cell in the boundary layer was 5× 10−6 m. The tower grid contained 96 cells along
the height of the tower, 256 cells in the cicumferential direction, with a 64×64 tip cap. The
tower-wake grid was well-resolved approximately 5 tower diameters downstream and the near-
wake grid was well-resolved approximately one rotor diameter downstream. The volume grids
around the blades and the tower were generated using HypGrid[14]. The total number of cells
in the grid was 17.4×106.

Rotor-tower
mesh contains
17.4 × 106 grid
cells.
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Figure 11. Domain outline.

Figure 11 shows the domain layout for the modern MW turbine. The inflow boundaries are
coloured in blue and the outlet is coloured in red. On the bottom boundary a symmetry (slip-
wall) boundary condition was applied. Side and rear views ofthe mesh are shown in Figure
12.

Figure 12. Side and rear view of the mesh.

Table 1 summarises the computational parameters used in thesimulations presented in this
chapter.

Computational Parameters

Time integration PISO
Convective terms QUICK
Turbulence model k−ω
Time step 0.002 seconds
Subiterations 6
Grid Size 17.4×106 cells

Table 1. Summary of the computational parameters for the simulations.

In the present method it is possible to prescribe any inflow condition to the simulation without
having to control it in the interior of the domain. This is because there is no actual wall condition
at the ground boundary, since, as shown in Figure 11, the ground boundary is represented by
a slip wall. When enforcing a no-slip wall boundary condition, a boundary layer will build up

Risø–R–1649(EN) 21



Figure 13. Detailed view of the mesh showing the individual overlapping grids in the region
around the tower.

that is dictated by the Reynolds number of the flow. In the present case, this would result in
a turbulent eddy viscosity that would be many orders of magnitude higher than the molecular
viscosity, reducing the effective Reynolds number seen by the rotor. The use of a slip wall
at the ground may not be the best solution since the speedup below the rotor might be too
high. However, it allows for an easy implementation of arbitrary shear flows, while no other
alternative is easily available.

3.4 Effect of Inflow Shear

During night time, turbines have been observed to operate inshears where the velocity can vary
as much as 6 m/s over the rotor disc, suggesting that dynamic effects can play an important role
in such conditions. Two different inflow shears are used in the present computations. In the first
one, the velocity shear profile is modelled as a power law as follows

U(z) = Uhub(z/zhub)
α (10)

wherez is the height above ground,Uhub is the inflow velocity at hub height, andα is the power
coefficient, here set to 0.55, with no directional change in the vertical direction. In the second
one the shear gradient is very similar with a slightly higherhub height velocity. The main
difference between the two shears is that in the second one, the turning of the flow up through
the atmospheric boundary layer is also included. The two shear profiles are shown in Figure
14. Both profiles represent typical night time velocity profiles, with very high shear combined
with, in the second case, a strong turning of the flow up through the boundary layer. In the
present computations the inflow is assumed to be laminar, which is justifiable since the strong
stratification that is usually present at night causes the real flow conditions to be essentially
laminar.

Severe shear pro-
files are common
at night. Inflow
is essentially lam-
inar. Looking firstly at the simulation carried out with the power law shear profile, Figure 15 shows

the axial and tangential force along the blade plotted for four azimuthal positions normalised
with the force distribution at an azimuth angle of 0 degrees.The axial force reduces quite
uniformly along the blade during the rotational cycle, whereas the tangential force is reduced
considerably more on the outer part of the blade at the 180 degree azimuth position. The dif-
ference between the load at the 90 degree and 270 degree azimuth positions is rather modest,
indicating only little hysteresis during the cycle. The hysteresis effects are, as might be ex-
pected, clearly stronger on the inner part of the blade wherethe incidence is larger and the
reduced frequency based on the rotational frequency is higher.

Hystersis effects
are strongest to-
wards the root of
the blade.
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Figure 14. The shear profiles used in the shear computations.This profiles represent severe, yet
typical, night time situation seen at Høvsøre test station.
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Figure 15. Normalised blade normal and tangential force at four azimuthal positions for the
power law shear profile computation.

The power production of the turbine operating in shear was compared to an identical setup
where the inflow velocity was uniform and equal to the velocity at hub height in the shear
computation. The results for the two computations agree well with the findings of Sørensen
and Johansen [15] in that the power and thrust are largely identical only differing by less than
1%. It should be noted that the shear profile used in the present simulations is identical to the
one used in Sørensen and Johansen [15], and as is noted in thispaper, this behaviour might be
dependent on the actual shape of the shear profile.

In Figure 16 the normalised axial velocity in the vertical symmetry plane atr/R=0.79 is shown
for the shear computation compared to the uniform inflow computation. The flow blockage is
clearly comparable for the two types of inflow, and at this wind speed the rotor does not have
any effect on the incoming flow beyond two diameters upstreamof the rotor.

Figure 17 shows the axial velocity shear profile at various positions upstream and downstream
of the rotor. It is evident that the rotor does not have a largeeffect on the flow upstream. The
flow is accelerated considerably below the rotor, due to the presence of the ground, whereas the
unconstrained flow on the upper part of the rotor is not accelerated as much. The wake expands
considerably more downward than upward, with a subsequent upward shift and contraction of
the wake around two diameters downstream.

Flow is accel-
erated below
the rotor due
to the ground
proximity.
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a line through the rotor plane at r/R=0.79
for the modern MW turbine.
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Figure 17. Velocity shear profile upstream
and downstream of the MW turbine rotor.

Secondly, results from the computation carried out with theHøvsøre shear profile that also in-
cludes a directional change of the flow up through the atmospheric boundary layer is presented.
Figure 18 shows the normalised blade normal and tangential force. Compared to Figure 15, the
forces are roughly equivalent at the 180 degree azimuth position, with a large reduction in the
forces on the blades. At the 90 and 270 degree azimuth positions the forces differ slightly; how-
ever, not in a manner consistent with the first case, where there was a lag of the forces at the
270 degree position. Here there is a reduced load on the innerpart of the blade and an increased
load on the outer part.

Hysteresis ef-
fects are again
strongest towards
the root.
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Figure 18. Normalised blade normal and tangential force at four azimuthal positions for the
Høvsøre shear profile computation.

3.5 Rotor-Tower Interaction

In the following two sections the results for the two computations where both rotor and tower
is included will be presented where the focus is on the rotor-tower interaction.

3.5.1 Turbine in Uniform Inflow

The simulation with uniform inflow was carried out to examinethe tower shadow effects in an
isolated manner, and to make a basic comparison to the results obtained with the BEM code
implemented in HAWC2.

Figure 19 shows a comparison of the rotor thrust and torque over one revolution computed
using CFD and BEM, respectively. BEM appears to consistently overpredict the tower shadow
compared to the CFD results by as much as 100% on both the thrust and the torque. EllipSys3D
predicts approximately 1% reduction of the thrust during tower passages, and an approximate
2% reduction on the torque. BEM predicts these to be 2% and 4%,respectively. Both CFD and
BEM show a slight lag in the tower shadow. Note that the absolute values of thrust and torque
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differed by approximately 10% which can be attributed to theturbulence model used in the
CFD computations.

CFD predicts less
tower shadow
compared to
BEM.
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Figure 19. Normalised thrust and torque for the turbine operating in uniform inflow conditions.

Figure 20 shows the normalised tower bottom tilt and roll moments over one revolution only
including forces on the tower. During free flow conditions the tilt moment is rather constant,
whereas the blade passages induce a large suction on the front of the tower causing the moment
to approach zero. The roll moment is likewise dominated by the blade passages, with little
influence of the periodic forces caused by tower vortex shedding.

Tower forces are
dominated by
blade passages.

The tower bottom tilt moment for the entire turbine, Figure 21, shows an approximate 1.5%
reduction during blade passages that span over approximately 40◦ azimuth. The tower shadow

Tower shadow
gives rise to 1.5%
reduction if tilt
moment.

is not exactly symmetric in that the recovery is slightly slower than the entry reduction in
moment.

The local flow angle and relative flow speed were extracted atr/R=0.68 and compared to BEM
computations, Figure 22 . Note that both the BEM computed LFAand flow speed were shifted
to match that obtained using CFD.

The CFD results show an increasing LFA as the blade travels from an azimuth of zero towards
180◦ azimuth. This is thought to be due to the slip wall condition that gives rise to a slight flow
acceleration below the rotor disc, which is not included in the BEM model.

Looking closer at the tower vortex shedding, Figure 23 showsthe non-dimensionalised sec-
tional side force on the tower at three vertical positions, one inside the rotor disc (h/H=0.55),
and two below (h/H=0.27 andh/H=0.16). The side force inside the rotor disc is clearly dic-
tated by the blade passage frequency with high spikes duringa blade passage. However, it is
evident that the vortex shedding below the rotor disc is alsoin phase with the blade passage
frequency, resulting in a Strouhal number (St = f D

U ) equal to 0.25. This is quite close to the
natural frequency of a circular cylinder, which is typically 0.2, which suggests that a type of
lock-in phenomena could be at play. The simulation has, however, not run for very long, and
it is well known that vortex shedding can take a long while before it builds up. As such the
shedding frequency could shift if a longer simulation time was allowed.

Indication of
lock-in of vor-
tex shedding
frequency.
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Figure 20. Normalised tower bottom tilt and roll moment on the tower for the turbine operating
in uniform inflow conditions.
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Figure 21. Normalised tower bottom tilt moment for the turbine (rotor+tower) operating in
uniform inflow conditions.

3.5.2 Turbine in Shear Inflow

Figure 14 shows the shear profile prescribed at the inlet for the present simulation.

Figure 24 shows the thrust and torque for the CFD and BEM computations. As in the uniform
inflow case, the tower passage gives rise to the largest variation in both quantities, approxi-
mately 1.5% in thrust and 2% in torque in the CFD computations. The thrust exhibits a fairly
unsteady behaviour reaching a maximum when blades are at approximately 40◦ azimuth (160◦

and 280◦ azimuth for blade 2 and 3). A similar behaviour is predicted by the BEM computa-
Good qualitative
agreement be-
tween CFD and
BEM. tions, although the maximum seems to be reached slightly earlier than for the CFD computa-

tions. The tower shadow is, as opposed to the uniform inflow case predicted quite well for the
thrust, whereas there is still a discrepancy on the torque.

Figure 25 shows the tower root tilt and roll moment, that behave largely as seen for the uniform
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Figure 22. Local flow angle and relative speed at r/R=0.68 for the turbine operating in uniform
inflow conditions.
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Figure 23. Tower side force coefficient at three heights for the uniform inflow case. Note that
the plots for h/H=0.16 and h/H=0.27 have been multiplied by two for clarity.

inflow case, with a slightly larger variation between two consecutive passages. The blade pas-
sages give rise to a large reduction in the tilt moment and a large oscillation of the roll moment.
However, the roll moment has a large degree of variation in between blade passages possibly
caused by vortex shedding.

Looking at the total tower bottom tilt moment for the rotor and tower, Figure 26, there is
again a slightly larger variation than for the uniform inflowcase, and a similar reduction of
approximately 2.5% during a blade passage.

Tower shadow
gives rise to 2.5%
reduction if tilt
moment.As shown in Figure 27 the local flow angle and relative wind speed were as in the uniform

inflow case extracted atr/R=0.68 and compared to HAWC2 computations and the experimental
results. In the CFD computations these quantities were extracted at a position approximately
equivalent to that of the Pitot tube in the experiment, see Figure 10. The curves have been
shifted to match the EllipSys3D curve at an azimuth angle of zero.
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Figure 24. Normalised thrust and torque for the turbine operating in uniform inflow conditions.
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Figure 25. Normalised tilt amd roll moment on the tower for the turbine operating in shear
inflow conditions.

The fact that the computations did not include any coning of the rotor, as well as having as-
sumed the blade to be rigid, is another possible cause for therelatively poor agreement. Another
possible cause for the discrepancy is that the u-component of the shear profile was assumed to
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conditions.
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Figure 27. Local flow angle and relative flow speed at r/R=0.68 for the turbine operating in
shear inflow conditions.

be linearly decreasing towards the ground, resulting in a large positive u-component below the
rotor disc. In retrospect, this is perhaps not so realistic,however, due to time constraints, new
simulations could not be done.

Similar to the uniform inflow case, Figure 28 shows that the sectional tower side force is dom-
inated by the blade passage frequency inside the rotor disc.Below the rotor disc, the BPF is
still visible in the response, however, the vortex sheddingis clearly not in phase with the BPF. No lock-in ob-

served.
This suggests that there is no clear lock-in phenomena taking place most likely due to the fact
that the natural frequency of the vortex shedding is different along the span of the tower due to
the strong velocity shear.
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3.6 Rotor-“Nacelle” Interaction

In the literature earlier works have addressed the issue of nacelle aerodynamics using compu-
tational methods [12]. These works, focused mainly on predicting the flow velocity and less on
the flow angle, and used an actuator disc model in place of an actual representation of the ro-
tor. In turn, these works had a very detailed representationof the nacelle. Although the present
computation did not include the nacelle, some observationscan be made regarding the probable
nature of the flow in the nacelle region since the flow is thought to be dominated by the rotating
blades and less so by the exact shape of the nacelle. In the following the computation including
shear and turning of the flow in the vertical direction is used. Three velocity probes were placed
at the approximate location where the anemometer is placed,as shown in Figure 10 which is
also indicated in Figure 29. The figure shows the axial velocity and vorticity magnitude from
two different perspectives.

As is evident, the flow is highly unsteady in this area, with influence from the vortices shed
from the cylindrical region on the blades, as well as the rootvortices.

Figure 29. (left) Side view showing axial velocity and (right) top view showing vorticity mag-
nitude in the nacelle region for the turbine operating in shear inflow conditions.

Figure 30 shows the computed flow speed and yaw angle at the three probes for the computa-
tion. The averaged flow speeds measured over 14 revolutions at the three probes was predicted
to being 11.62 m/s, 11.56 m/s, and 11.09 m/s, respectively. Compared to the freestream velocity
of 11.29 m/s, the deviation is crearly very small. For this shear inflow case, the turbine operates
at approximately 9◦ yaw measured at hub height. The probes measure a large variation of the

Good estimation
of flow speed.
Large discrep-
ancy in flow
angle.

flow angle of up to±20◦. Taking an average of the measured flow angles, predicts a yawangle
of −3.40◦, −2.43◦ and−1.89◦, respectively, for the three probes. A likely cause of this is the
wake rotation, that gives rise to a counter-clockwise angular velocity, which for this flow case
appears to balance with the inflow cross-flow velocity, resulting in a greatly reduced yaw angle
measurement.
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Figure 30. Probe flow speed and yaw angle at hub height for the shear inflow computation.

If indeed these findings are consistent with observations onmodern wind turbines, further in-
vestigation might give insight into a possible correction of the yaw error.

3.6.1 Wake Development

The final aspect of this work is an investigation of the development of the wake. In this section,
the focus will solely be placed on the two shear inflow computations. Looking firstly on the
case without directional change of the inflow in the verticaldirection, Figure 31 shows the axial
velocity at various distances downstream of the turbine. The deficit immediately downstream

Wake rotation
is important for
development of
wakes in shear
flow.

of the rotor is asymmetric as a result of the combination of variation of the load across the rotor
disc and rotation of the wake. Further downstream the asymmetry becomes more pronounced
with an entrainment of low velocity flow that surges upwards as the wake develops.

Turning to the flow case where the flow direction changes in theveirtical direction, it is evi-
dent from Figure 32 that the wake develops in a highly three-dimensional manner, caused by
the combination of the azimuthal variation of the rotor loading, the wake rotation and the free
stream transport velocity. Due to the strong cross flow component the wake is skewed strongly,
resulting in the wake being largely disintegrated three diameters downstream. The wake ro-

Combination
of shear and
flow turning
causes wake
to disintegrate
quickly.

tation causes the low velocity flow from the bottom of the waketo be ejected upwards as the
wake travels downstream, as well as seemingly ejecting the tower wake upwards.

3.7 Conclusions

In the present work a number of CFD simulations have been carried out on the Siemens 3.6MW
wind turbine for various flow situations. The influence of shear on the rotor loads was inves-
tigated, and it was found that the azimuthal variation of theload gave rise to some hysteresis
in the axial and tangential forces. The integrated rotor thrust and power were largely identical
to simulations carried out with uniform inflow. However, this might well be dependent on the
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Figure 31. Contour plots of axial velocity downstream of theturbine operating in a shear
without a directional change in the vertical direction.

shape of the shear and not a general trend. The influence of tower shadow has been investigated
for two flow cases, one with and another without inflow shear. Generally, the CFD results un-
derpredicted the tower shadow by as much as 100% compared to BEM computations, which
gives cause for further investigation. Although the nacelle was not included in the simulations
the flow in the region of the nacelle anemometer was investigated, and it was found that the
measured flow angle in the wake differed by as much as 7◦ relative to the freestream flow
angle. As such, for the flow case where the turbine operated in10◦ yaw error, the flow angle
in the wake of the turbine measured on average -0.08◦, giving a possible explanation to the
apparently consistent yaw error observed in the Høvsøre experiment. The investigation of the
wake development downstream of a turbine operating in a shear flow showed that a rotation in
the wake gave rise to significant mixing of the low velocity flow from the bottom half of the
wake into the top half. Additionally, for the flow with large turning of the shear in the vertical

32 Risø–R–1649(EN)



Figure 32. Contour plots of axial velocity downstream of theturbine operating in a shear with
a directional change in the vertical direction.

direction, the wake was largely disintegrated only three diameters downstream of the turbine.
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4 Analysis of Rotational Effects in the Bound-

ary Layer of a Wind Turbine Blade

Author: Jens N. Sørensen and Carlos E. Carcangiu

It is well-known that the boundary layer properties of wind turbine blades are affected by
rotational and 3–D flow effects. In spite of this, the industrial design approach is based on em-
ploying the blade–element momentum (BEM) theory with lift and drag forces determined from
2–D measurements. The results obtained are quite accurate in the proximity of the design point,
but in stalled conditions the BEM is known to underpredict the blade loading, as shown e.g.
in [1]. A likely explanation for the underprediction is thatthe flow is not adequately modelled
by static 2D airfoil data in the stalled regime. From experiments and CFD computations it has
been shown that radial flow exists in the bottom of separated boundary layers on rotating wings
and it is likely that this alters the lift and drag characteristics of the individual airfoil sections.
The physics behind this is that the outflow induces a Coriolisforce in the chordwise direction
which acts as a favorable pressure gradient that tends to delay boundary layer separation [2].
Further, the centrifugal force produces a spanwise pumpingeffect, which results in a thinning
of the boundary layer.

The present work aims at analysing rotational effects in theboundary layer of a wind turbine
blade using input from computer simulations. However, before going into the details of the
analysis, we here give a brief introduction to former work.

4.1 Former works

Three-dimensional effets in the boundary layer of rotor blades was firstly described by Him-
melskamp [3] who measured the performance of a propeller andfound lift coefficients as high
as 3 near the hub (see Figure 33). Later experimental studieshave confirmed these early results,
indicating both a delay in the stall characteristics and enhanced lift coefficients. Measurements
on wind turbine blades have been performed by Ronsten [4], showing the differences between
rotating and non–rotating pressure coefficients and aerodynamic loads, and by Tangler and Ko-
curek [5], who combined results from measurements with the classical BEM method to com-
pute lift and drag coefficients and the rotor power in stalledconditions. Recently, the NREL

Investigations
of the rotational
effects on the
aerodynamics
of rotors have
been ongoing for
decades.

Unsteady Aerodynamic Experiment in the NASA-Ames wind tunnel (see Schreck [6]) has con-
siderably increased the knowledge of rotational effects onrotor blades. In this experiment a 10
m diameter test turbine developed at NREL was placed in the 24.4 m by 36.6 m (80 ft. x 120 ft.)
NASA-Ames wind tunnel. Most emphasis was put on pressure distributions over the blade and
a considerable amount of data has been collected. The data were the starting point for an in-
ternational cooperation project, the IEA Annex XX: “HAWT Aerodynamics and Models from
Wind Tunnel Measurements” aiming at analyzing the NREL datato understand flow physics
and to enhance aerodynamic subcomponent models. A similar European project was recently
undertaken under the acronym “MEXICO” (Model Rotor Experiments under Controlled Con-
ditions). In this project, a three bladed rotor model of 4.5 mdiameter was tested in the DNW
wind tunnel, with one of the blades instrumented with pressure sensors at 5 radial locations.
The data from this experiment are now being analysed and willform the basis of an extension
of the aforementioned IEA Annex.

A pioneering work on explaining rotational effects on rotating blades was carried out by Sears
[7], who derived a set of equations for the potential flow fieldaround a cylindrical blade of infi-
nite span in pure rotation. He demonstrated that the spanwise velocity component only depends
on the 2-dimensional potential flow and that it is independent of the span (this is sometimes
referred to as theindependence principle). Later, Fogarty and Sears [8] extended the analysis to
the potential flow around a rotating and advancing blade. They confirmed that, for a cylindrical
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Figure 33. Lift coefficients at various radial sections on a rotating propeller, measured
by Himmelskamp in 1945 [20]

blade advancing like a propeller, the tangential and axial velocity components are the same as
in a 2–D motion with the same local relative speed and incidence. A more comprehensive work
was later carried out by Fogarty [9], dealing with numericalcomputations of laminar boundary
layers on a rotor blade. Here it was shown that the separationline is unaffected by rotation
and that the spanwise velocity component in the boundary layer is small, as compared to the
chordwise component. A theoretical analysis by Banks and Gadd [10] focussed on demonstrat-
ing how rotation delays laminar separation. They found thatthe separation point is postponed
due to rotation, and that the boundary layer close to the hub is completely stabilized against
separation. McCroskey and Dwyer [11] studied secondary effects in laminar incompressible
boundary layers of helicopter rotor blades, combining numerical and analytical approaches.
They showed that the Coriolis force in the crossflow direction becomes more important when
approaching the rotational axis. On the other hand, they also found that the centrifugal pump-
ing effect is weaker than expected. Its contribution, however, increases as the magnitude of the
adverse pressure gradient increases.

Experiments and
also analytical
and numerical
analysis have
been carried
out by several
researchers to
investigate the ro-
tational effects on
rotating blades.

In the last two decades computational fluid dynamics (CFD) has developed tremendously, and
the study of boundary layers on rotating blades has often been carried on through a numeri-
cal approach. Twenty years ago, Sørensen [12] numerically solved the 3–D the boundary layer
equations on a rotating wing, using a viscous–inviscid interaction model. In his results the posi-
tion of the separation line still appears the same as for 2–D predictions, but near the separation
line the difference between 2–D and 3–D lift coefficients becomes more pronounced. A quasi
3–D approach, based on viscous–inviscid interaction was introduced by Snelet al.[1]. Further,
they proposed a semi–empirical correction of the 2–D lift curve, identifying the local chord to
radius ratio (c/r) of the blade section as the main parameter. This result has been confirmed by
Shen and Sørensen [13] and by Chaviaropoulos and Hansen [14], who performed airfoil com-
putations applying a quasi 3–D assumption of the Navier–Stokes equations. Du and Selig [15]
approached the problem by solving the 3–D incompressible steady boundary layer equations.
Their analysis stated that the stall delay mainly depends onthe acceleration of the boundary
layer, i.e. on the Coriolis forces. Full 3-D Navier-Stokes solutions have been carried out by
N.N. Sørensen et al. [16] who successfully compared RANS computations with measurements
from the NREL experiment.

Besides the corrections by Snelet al.[1] and Chaviaropoulos and Hansen [14], 3–D corrections
of 2–D airfoils characteristics have been made by Lindenburg [18], taking the local tip speed
ratio into account and introducing a drag force correction,and by Baket al. [19], using the dif-
ferent pressure distributions of rotating and non-rotating airfoils. In both cases the corrections
were compared with experimental data.
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4.2 Mathematical and Numerical Modelling

In the present work the CFD code Fluent has been utilized for computing the viscous incom-
pressible 3–D flow field around a rotating blade, consideringa non–inertial reference system
moving with the rotor. 3–D and 2–D turbulent flow simulationswere performed, with different
angles of attack. The rotational speed is constant for all the computations. A constant–chord,
non–twisted and zero–pitched blade was used and a non–uniform incoming flow was consid-
ered (see Figure 34). The geometric angle of attack is kept constant along the span by speci-
fying the axial flow component as(Ωz)/V(z) = const, wherez is the radial coordinate andΩ
the rotational speed. The idea is to build a database of different flow conditions, varying angle
of attack, Reynolds number and radial position. In order to analyse the output data, an ad-hoc
post-processing tool has been developed to eveluate the dominant terms in the boundary layer
equations.

Figure 34. Incoming wind velocity profile.

Figure 35. Reference systems of coordinates, global(x̄, ȳ, z̄) and local(x,y,z).

4.2.1 Mathematical model

Consider a blade section performing a steadily rotating motion, two different reference systems
are introduced. One is a global reference system attached tothe blade and moving with it. The
other one is a local reference system, still fixed with the blade, but aligned point by point
with the local tangential and normal directions of the bladesurface (see Figure 35). In the first
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system the steady incompressible time–averaged Navier–Stokes equations (seee.g.[21]) in a
rotating frame of reference are written as

∇ ·~Vr = 0 (11)

∇ · (~Vr~Vr)+2~Ω×~Vr +~Ω×~Ω×~r = −
1
ρ

∇p+ ∇ · τ (12)

where~Vr is the relative velocity vector,~Ω is the the rotational speed, andρ is the density of the
fluid. The stress tensorτ is defined as

τ = ν
(

∇~V + ∇~VT
)

(13)

whereν defines the viscosity. The Coriolis force is given by the term2~Ω×~Vr and the centrifugal
force by~Ω×~Ω×~r.
The second reference system refers to the boundary layer equations, which will be described
later.

4.2.2 Numerical model and mesh topology

All the computations have been performed using the finite–volume code Fluent 6.3 with a
steady–RANS approach. An untwisted blade, consisting of a symmetric NACA 0018 airfoil
with constant chord, has been modelled by applying periodicity corresponding to a three–
bladed rotor. The blade geometry was scaled using a constantchord length,C = 1 m. The

A blade with con-
stant chord and
constant twist
consisting of
the NACA0018
airfoil is investi-
gated using the
CFD code Fluent.

radius is 2C and 20C at the root and at the tip of the blade, respectively. A computational
domain enclosed by two cylinders has been chosen, with the blade starting at the inner cylinder
and ending at the outer cylinder (Figure 36). The full axial extension of the domain is 2 times
the rotor diameter and is centred on the blade. These dimensions are the result of a proper
balance between computational efforts and boundary independency.

Figure 36. Computational domain (C = chord length).

The grid has been generated modularly with Gambit. It consists of a C–shaped region around
the blade (Figure 37) blended with a cylindrical external block, as shown in Figure 38.

The grid consists of about 80 mesh points in the direction normal to the blade, with 35 cells go-
ing from the airfoil at a normal distance of approximately half–chord (with a first cell height of
10−5 chord length), 120 cells for each side of the profile and 45 cells in the spanwise direction.
The boundary layer has been solved directly, withy+ taking values between 1 and 3. Theκ–ω
SST turbulence model by Menter was used for turbulent computations. A low-Re correction
was implemented to damp the turbulent viscosity as the Reynolds number gets low.

Dirichlet boundary conditions was used for the velocity at the inlet, whereas Neumann con-
ditions was imposed for the pressure at the outlet. The innerand outer cylindrical surfaces
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Figure 37. C-mesh around NACA 0018 airfoil(120x35)

Figure 38. Computational grid(0.9 ·106 volumes)

were regarded as Euler–slip walls. In the 3–D case the standard grid consists of about one mil-
lion mesh points. A refinement study was performed with two millions mesh points. To show
differences and analogies the same set-up was used for both 2–D and 3–D computations.

4.2.3 Determination of 3–D angle of attack

Rotational effects can be studied and identified by comparing 3–D rotating blade computations
with corresponding 2–D computations. However, the flow conditions in the two cases must be
chosen in a consistent manner. In order to compare the various computations, it is required that
the actual angle of attack is the same. Angle of attack, however, is a 2–D concept, defined as the
geometrical angle between the relative flow direction and the chord of the airfoil. Consequently,
finding an equivalent local angle of attack for 3–D flows is nottrivial. For a rotating blade the
flow passing by a blade section is influenced by the bound circulation on the blade. Moreover,
a further complication arises from the 3–D effects from tip and root vortices, which we for
the sake of simplicity neglect in our model. To determine thelocal angle of attack from the
computed 3–D flow field two different techniques were considered. The first technique is the
averaging technique suggested in [22] and then, slightly modified, employed in [23]. The sec-
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Figure 39. Computational grid, detail of the blade root

ond technique, which was recently proposed by Shenet al. [24] as a method suitable for more
general flow conditions, is based on the determination of thelocal induced velocities created
by the bound vortices. After verifying the agreement between output from the two strategies,
the latter was finally chosen for all further investigations.

4.2.4 The boundary layer equations and postprocessing

In order to analyse the output data from the N–S computations, an analysis code has been
developed in Matlab to evaluate the relative importance of the various terms in the boundary
layer equations with respect to rotational effects.

The 3–D incompressible boundary layer equations for a steady rotating flow, based on Prandtl’s
boundary layer equations (see [20]), read

Based on the
CFD computa-
tions the different
terms in the
equations are
postprocessed
and evaluated
to find their
significance.

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (14)

u
∂u
∂x

+v
∂u
∂y

+w
∂u
∂z

= −
1
ρ

∂p
∂x

+2Ωwcosθ+ Ω2xcosθ+
∂
∂y

(
ν

∂u
∂y

−u′v′
)

(15)

u
∂w
∂x

+v
∂w
∂y

+w
∂w
∂z

= −
1
ρ

∂p
∂z

+2Ωucosθ+ Ω2z+
∂
∂y

(
ν

∂w
∂y

−v′w′

)
(16)

where(u,v,w) are the velocity components in directions(x,y,z), i.e.the axes of the local system
of coordinates, withθ defining the angle between the tangent to the airfoil and thex−zplane.

The desired output variables are computed in some proper surfaces of constant radius, extended
to a distance of a half chord length from the blade surface (Figure 40). The variables of interest
are sorted in a new order, according to the boundary layer tangential and normal directions (see
the local system of coordinates in Figure 35 and Figure 41).

The derivatives are estimated using 2nd order CDS polynomial fitting of the output data for
non–uniform spaced grids.

The boundary layer thickness is determined by checking either the vorticity magnitude or the
velocity gradient along the normal direction. The last technique was suggested by Stock and
Haase [25].
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Figure 41. Grid around the airfoil and new nodes indices

4.3 Results

We here present the outcome of the simulations, focusing on general features in the flow field
around rotating blades and the effects of rotation on pressure coefficient distributions and inte-
gral boundary layer characteristics. A number of differentflow conditions have been simulated
and analysed, with geometric angles of attack ranging from 0to 16 degrees. The effective values
of the local angle of attack, however, may exceed 20 degrees at inboard locations, and a large
portion of the blade is dominated by separation phenomena (see Figure 42). As expected, in the
attached part of the blade, the limiting pathlines are aligned with the main stream direction, so
that they can be regarded as in a 2D-alike condition. This is true mainly for the outboard part of
the blade, whose behaviour resembles that of an ideal wing ofinfinite span. On the other hand,
where separation dominates, the flow pattern shows evidenceof strong radial flow components
in the inboard part of the blade.

In the turbulent flow computations the Reynolds number alongthe blade varies between 1·106

and 6·106 from root to tip. The radial stations chosen for the analysisare located atr/R= 0.16,
0.54 and 0.75. A pure rotating blade, without inflow and with zero pitch angle, is presented as
a reference case for a laminar flow regime. The laminar velocity profiles, shown in Figure 43,
look physically correct and the crossflow is seen to dominateafter separation, which in this
case occurs at a position of about 80% of the chord length.

In Figure 44 in–plane streamlines around a rotating blade section and the corresponding 2–D
airfoil are compared in a situation of deep stall. It is clearly seen that rotation stabilizes vortex
shedding and limits the growth of the separated region. Moreover, the stagnation point moves
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Figure 42. Limiting streamlines on blade suction side for different geometric flow in-
cidences.
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Figure 43. Velocity profiles in the local coordinate system for different chordwise positions x/C,
plotted against the non-dimensional boundary layer thickness y/δ and non-dimensionalised
with the values at boundary layer edge (3–D, r/R= 0.16, AOA = 13.4 deg, Re= 102)

downstream, and separation tends to approach the leading edge.The computa-
tions revealed
differences in
e.g. velocity
profiles at dif-
ferent chordwise
stations and
differences in
separated areas.

Figure 44. Streamlines around the 3–D rotating blade section at r/R = 0.16 and the corre-
sponding 2–D case with local incidence of26.9 degrees and Reynolds number about106

This is confirmed by Figure 45, where 2–D and 3–D pressure coefficients are compared. It is
seen that the pressure at the suction side is less flat in the 3–D case, which then modifies the
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overall distribution of the pressure on both the pressure and the suction side of the airfoil.

r/R = 16%; AOA = 26.9 deg; Re = 1.1 106
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Figure 45. Pressure coefficient distribution of the 3–D rotating blade section at r/R = 0.16
compared to the 2–D case (angle of attack = 26.9 degrees, Reynolds number =106)

Isoplots of static pressure and vorticity are shown in Figure 46 and Figure 47, respectively. Dif-
ferent radially spaced slices of the domain around the bladeare considered. These planes are
curved surfaces of constant radius (the value is indicated on the labels) covering a normal dis-
tance of 1 chord all around the blade surface. The same colormap has been used for all sections.
Since the pressure scales with radius the pressure is most pronounced at larger distances from
the rotational axis. The outward sections operate at lower angles of attack, leading to attached
flow with lift coefficients resembling the 2D ones.

Figure 46. Contours of static pressure p [Pa], radial slicesalong the cylindrical blade, (U=10
m/s)

The vorticity field is depicted in Figure 47. The blue colour that fills almost entirely each
slice is the potential field past the blade, where vorticity is zero. The boundary layer is clearly
visible as a thin red-oriented belt around the airfoil sections. The boundary layer, gets thicker
and thicker while approaching the trailing edge. This is most evident at the suction side, where
strong adverse pressure gradients exist. However, the slices provide a vivid description of the
different behaviour an airfoil boundary layer flow can experience. The most outboard section
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shows an almost symmetric behaviour on the two sides of the airfoil, the angle of attack is small
and no separation is seen, so that the two boundary layers leave smoothly the trailing edge and
combines into a common wake structure. Going inward the flow incidences increase, trailing
edge separation occurs on the suction side. At a certain point two separation bubbles occur,
one located just after the leading edge and the other at trailing edge. In between the separation
bubbles the flow is dominated by complex and unsteady flow structures (see also Figure 44).

Figure 47. Contours of vorticity magnitudeξ [1/s], radial slices along the cylindrical blade,
(U=10m/s)

As an example of the post-processing output, the magnitude of the Coriolis and spanwise–
convection terms in the governing equations have been evaluated. The outcome is shown in
Figure 48, which depicts the crossflow (r1) and Coriolis (r2) terms, computed from the follow-
ing equations

r1 = Log




∣∣∣w∂u
∂z

∣∣∣
∣∣∣u∂u

∂x

∣∣∣+
∣∣∣v∂u

∂y

∣∣∣


 (17)

r2 = Log


 2Ωw cosθ∣∣∣u∂u

∂x

∣∣∣+
∣∣∣v∂u

∂y

∣∣∣


 (18)

When separation occurs both terms increase, with the Coriolis term exhibiting the highest

The compu-
tations were
postprocessed to
investigate e.g.
the crossflow
term and the
Coriolis term.

values. The figures are shown at two different positions, implying that the effective angle of
attack and the Reynolds number are different for the two sections. Since the blade is rotating,
different local angles of attack are seen by the blade sections. The area depicted in Figure 48
is a close up of the boundary layer region with the local normal-to-wall coordinate scaled to fit
the computed boundary layer thickness. The very first part ofthe airfoil section has not been
considered, since the boundary layer is still rather thin and the processed data are influenced
by curvature effects at the leading edge. A more comprehensive analysis on the boundary layer
integral properties is still in progress to determine more precisely the most important effect of
rotation.

An important result of the analysis is the evaluation of the aerodynamic coefficients shown in
Figure 49. It is clearly seen that the lift coefficient is increased when the blade is subject to
rotation, and that this effect is most pronounced near the axis of rotation. On the other, the
enhanced lift is associated with higher values of the drag coefficient. The results have been

44 Risø–R–1649(EN)



• r/R= 0.26(c/r ∼= 0.2)−Re= 1.6·106 −AOA= 15.2◦

x/C

y
/d

e
lt

a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6

-4

-2

0

x/C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6

-4

-2

0

1e 1e
x/C

y
/d

e
lt

a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6

-4

-2

0

x/C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6

-4

-2

0

1e 1e
x/C

y
/d

e
lt

a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6

-4

-2

0

x/C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6

-4

-2

0

1e 1e

∼• r/R= 0.54(c/r ∼= 0.1)−Re= 3.0·106 −AOA= 10.5◦

separation
x/C

y
/d

e
lt

a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6

-4

-2

x/C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6

-4

-2

1e 1e

separation
x/C

y
/d

e
lt

a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6

-4

-2

x/C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6

-4

-2

1e 1e
x/C

y
/d

e
lt

a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6

-4

-2

x/C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

-6

-4

-2

1e 1e

Figure 48. Relative magnitude of crossflow derivative (left) and Coriolis term (right) in the
boundary layer x-momentum equations, in logarithmic scale. Separation is marked with a black
dashed line.

compared with a pure 2–D airfoil, showing that 3–D values arehigher for the whole range of
flow angles. However, the 3–D rotating results also differ from the reference at lower angles
of attack and attached flow conditions. A likely explanationis that the 2–D section is isolated,
while the real flow is the result from a three-bladed rotor subject to cascade effects and at
inbord sections the inviscid flow is dominated by strong adverse curvature effects. Moreover,
despite the magnitude of the domain, boundary conditions could play a role in influencing the
flow field. In fact the wind turbine has been modelled as a sort of ducted machine, rather than
an open–flow rotor. This problem, however, can be resolved byusing the outboard section (e.g.
r/R= 0.76) as a reference to the 2–D case.

To check the results, further comparison was carried out by comparing 3–D computations with
the semi-empirical 3–D correction of Snelet al. [1]. The correction, that basically depends
on the square of the ratio of local chord and spanwise position, was employed to correct the
2–D data at a radial position of r/R=16%. Under the same inflowconditions (AOA, Re), 2–D
computer simulations were run for a NACA 0018 airfoil. Applying the Snelet al. correction
to the resulting 2–D lift distribution resulted in the plot shown in Figure 50. Here, the dashed
line represents the linear trend of the first part of the 2–D curve. From the figure it is seen that
the computed 3–D results in the linear region is higher than the coresponding 2–D case. The
corrected lift coefficient is seen to be located in between the pure 2–D and the 3–D results.
At high angles of attack ( 22 degrees), however, the corrected and computed 3–D results are
almost identical.
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Figure 49. Drag and lift coefficients for the 3–D rotating blade sections at r/R = 0.16, 0.56
and 0.76 and the corresponding 2–D case. In the x-axis is the effective angle of attack

4.4 Concluding remarks

Present design approaches for wind turbines are typically based on employing the blade–
element momentum (BEM) theory, with lift and drag forces determined from 2–D measure-
ments. Although CFD is not a practical design tool, useful suggestions for classical design
codes can be derived, based on a quantitative explanation ofrotational phenomena. The aim of
the present work is to derive the basic tools for studying theinfluence of rotational effects on
rotating blades and utilize the results from the study in BEMcodes.

In the present work CFD–RANS computations were carried out to solve the flow field past a
rotating blade and to quantify the impact of rotational effects in the boundary layer.

A post-processing tool for studying the local velocity profiles and for evaluating the relative im-
portance of rotational terms in the boundary layer equations were developed and implemented.
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Figure 50. 2D and rotating 3D predicted CL compared to the Snel et al. correction method
output for the r/R=16% section, Re =106

The tools are used to determine integral properties of boundary layers in order to derive practi-
cal ’empirical’ corrections for use in the design. Early results for a simple blade geometry have
been presented, confirming that the loads on a rotating bladeare higher than those appearing
on a corresponding non-rotating case, and that this is most pronounced at inboard sections and
under separated flow conditions.

The work is still in progress and it is expected that the results from the Navier-Stokes compu-
tations can be used both to correct 2–D airfoil characteristics and to derive integral boundary
layer solvers aimed specifically for rotating blades.
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5 Laminar turbulent transition using the γ−Reθ
transition model

Author: Niels N Sørensen

When predicting the flow over airfoils and rotors, the laminar-turbulent transition process can
be important for the aerodynamic performance. Today, the most widespread approach is to use
fully turbulent computations, where the transitional process is ignored and the entire bound-
ary layer on the wings or airfoils is handled by the turbulence model. The main reason for
neglecting laminar/turbulent transition in rotor aerodynamics, is the dependence of most tran-
sition prediction methods on boundary layer quantities which makes them difficult to interface
to modern parallelized multiblock general purpose flow solver. To compute the boundary layer
quantities on a general 3D object, one needs to determine thestagnation point location, and
track the boundary layer development along the local flow direction close to the surface. Ad-
ditionally, one will need to transverse the boundary layer station in a direction normal to the
wall surface. Neither the tracking of the local flow direction nor the normal direction, are guar-
anteed to follow local grid directions and may additionallycross the block interfaces, which
makes the logistics of such a method very cumbersome. One implementation of such a method,
based on theen method was implemented in 2D [1], which has proven to be very accurate and
reasonably robust. In the same reference, work was ongoing to implement a similar method
for 3D, work that was unfortunately never finished. As an alternative approach the correlation
based transition model has lately shown promising results,and the present chapter describes
the effort of deriving the two non-public empirical correlations of the model, as well as a series
of applications to rotor and airfoil flows of interest to windturbines. The main advantage of
the model is the fact that it avoids the need to track the boundary layer flow and evaluate the
boundary layer quantities at each boundary layer station. This is achieved by the use of two

A new correlation
based 3D transi-
tion model is im-
plementedtransport equations one for intermittency and one for the transition onset moment thickness

Reynolds number.
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5.1 Nomenclature

dU/ds Acceleration along a streamline
k Turbulent kinetic energy
K Flow acceleration parameter(ν/U2)dU/ds
Rex Reynolds number based on length,ρxUre f/µ
Reθ Momentum thickness Reynolds number,

ρθU0/µ
Reθc Critical momentum thickness Reynolds

number
Reθt Transition onset momentum thickness

Reynolds number,ρθtU0/µ
R̃eθt Local transition onset momentum

thickness Reynolds number,
obtained from transport equation

RT Viscosity Ratioρk/(µω)

Reν Vorticity (Strain rate) Reynolds
numberρy2S/µ

S Absolute value of the strain rate,(2Si j Si j )
1
2

Si j Strain rate tensor,12(∂ui/∂x j + ∂u j/∂xi)

Tu Turbulence intensity 100(2k/3)
1
2 /U

U Local velocity(u2 +v2+w2)
1
2

Uo Local free stream velocity, outside of
boundary layer

Ure f Inlet reference velocity
y Distance to nearest wall
y+ Distance in wall coordinats,yuτ/µ
δ Boundary layer thickness
ε Turbulent dissipation rate
θ Momentum thickness

λθ Non-dimensional pressure gradient,ρθ2

µ
dU
ds

µ Molecular viscosity
µt Eddy viscosity
uτ Friction velocity

√
(τ/ρ)

ρ Density
τ Wall shear stress

Ω Absolute value of vorticity(2Ωi j Ωi j )
1
2

Ωi j Vorticity tensor,12(∂ui/∂x j − ∂u j/∂xi)

ω Specific turbulence dissipation rate

5.2 Introduction

The chapter describes the implementation of a new empiricalcorrelation based transition model
in the EllipSys code. A series of parametric computations are performed to determine the two
non-public empiric relations needed to make the model complete; one relation for the Critical
Momentum Thickness Reynolds Number; and one for the Transition Length Factor. This is
done as described in the original work of Menter et. al. [2, 3]using flat plate boundary layers
and the resulting expressions are given in the present paper. Other authors have proposed alter-
native correlations [4, 5], which for unknown reason do not agree with the present correlations.

Following the initial tuning of the model for flat plates, a series of typical wind turbine airfoils
are computed comparing the present version of the correlations based transition model with an
existing transition model featuring anen method, a by-pass model and a model for separation
induced transition [1] and experimental data. Generally, the airfoil computations show good
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agreement with both the existingen method and experimentally determined drag and transition
point location. Additionally, it is shown that the model is capable of capturing both natural, by-
pass and separation induced transition. Following the initial 2D tests, the model is applied to
the case of flow around a three-dimensional prolate spheroidof Kreplin et. al. [6], to illustrate
that the model is capable of predicting the correct transition location for the zero angle of attack
cases. Finally, the NREL-Phase-VI [7–9] turbine is used as atest case to verify the applicability
of the model to wind turbine rotor aerodynamics.

5.3 Flow solver

The in-house flow solver EllipSys3D is used in all computations presented in the following.
The code is developed in co-operation between the Department of Mechanical Engineering at
the Technical University of Denmark and The Department of Wind Energy at Risø National
Laboratory (now Risø-DTU), see [10, 11],[12]. The EllipSys3D code is a multiblock finite
volume discretization of the incompressible Reynolds-Averaged Navier-Stokes (RANS) equa-
tions in general curvilinear coordinates. The code uses a collocated variable arrangement, and
Rhie/Chow interpolation [13] is used to avoid odd/even pressure decoupling. As the code
solves the incompressible flow equations, no equation of state exists for the pressure, and in the
present work the SIMPLE algorithm of Patankar and Spalding [14, 15] or the PISO algorithm
of Issa [16, 17] is used to enforce the pressure/velocity coupling, for steady state and transient
computations respectively. The EllipSys3D code is parallelized with MPI for executions on
distributed memory machines, using a non-overlapping domain decomposition technique. Both
steady state and unsteady computations can be performed. For the unsteady computations the

The EllipSys3D
Navier-Stokes
solver is used for
the present studysolution is advanced in time using a 2nd order iterative time-stepping (or dual time-stepping)

method. In each global time-step the equations are solved inan iterative manner, using under
relaxation. First, the momentum equations are used as a predictor to advance the solution in
time. At this point in the computation the flowfield will not fulfil the continuity equation. The
rewritten continuity equation (the so-called pressure-correction equation) is used as a corrector
making the predicted flowfield satisfy the continuity constraint. This two step procedure corre-
sponds to a single sub-iteration, and the process is repeated until a convergent solution is ob-
tained for the time step. When a convergent solution is obtained, the variables are updated, and
we continue with the next timestep. For steady state computations, the global time step is set to
infinity and dual time stepping is not used, this correspondsto the use of local time stepping. In
order to accelerate the overall algorithm, a multi-level grid sequence is used in the steady state
computations. The convective terms are discretized using athird order QUICK upwind scheme,
implemented using the deferred correction approach first suggested by Khosla and Rubin [18]
and applied along with a MinMod limiter to obtain TVD behavior. Central differences are used
for the viscous terms, in each sub-iteration only the normalterms are treated fully implicitly,
while the terms from non-orthogonality and the variable viscosity terms are treated explicitly.
Thus, when the sub-iteration process is finished all terms are evaluated at the new time level.
In the present work the turbulence in the boundary layer is modeled by the k-ω SST eddy vis-
cosity model [19]. The equations for the turbulence model and the transition model are solved
after the momentum and pressure-correction equations in every sub-iteration/pseudo time step,
and in agreement with the recommendations of Menter et al. [2], a second order upwind TVD
scheme is used for the transport equations for turbulence and transition. The three momentum
equations, thek−ω equations and the two transition model equations are solveddecoupled
using a red/black Gauss-Seidel point solver. The solution of the Poisson system arising from
the pressure-correction equation is accelerated using a multigrid method. In order to accelerate
the overall algorithm, a multi-level grid sequence and local time stepping are used. For the
rotor computations with uniform inflow a steady state movingmesh approach is used [20].
The moving mesh option has been implemented in the EllipSys3D solver in a generalized way
allowing arbitrary deformation of the computational mesh,following [21].
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5.4 Transition Model

Theγ− R̃eθ correlation based transition model of [2], is a framework for implementing em-
pirical correlation based transition criterions in general purpose flow solvers, that can be used
together with structured, unstructured and parallelized solvers. The backbone of the model is
two transport equations one for intermittencyγ and one for the local transition onset momentum
thickness Reynolds number̃Reθt . Basically, the model relates the local momentum thickness
Reynolds number Reθ evaluated by Eqn. 19 to the critical value Reθc, and switches on the
intermittency production when Reθ is larger than the local critical value.

The model is
based on a simple
relation be-
tween Reynolds
numbers and
transition onset

Reθ =
Reν,max

2.193
. (19)

The transport equation for the intermittency is given by:

∂(ργ)
∂t

+
∂(ρU jγ)

∂x j
= Pγ −Eγ +

∂
∂x j

[(
µ+

µt

σ f

)
∂γ
∂x j

]
.

Where the production and destruction terms can be computed from the relations given below:

Pγ = Flengthca1ρS(γFonset)
0.5(1− γ) .

Eγ = ca2ρΩγFturb(ce2γ−1) .

Fonset1 =
Reν

2.193Reθc
.

Reν =
ρy2S

µ
; RT =

ρk
µω

; Fturb = e−(
RT
4 )4

.

Fonset2 = min(max(Fonset1,F
4
onset1),2) .

Fonset3 = max

(
1−

(
RT

2.5

)3

,0

)
.

Fonset= max(Fonset2−Fonset3,0) . (20)

Reθc andFlength are both functions of̃Reθt , and are not given in the original reference due to
proprietary reasons. The empirical relations for these will be determined later in the present
paper. Additionally, the model is very simple to use in connection with forced transition, as we
can artificially forceFonset to assume the maximum of the computed value from Eqn. 20 and a
function set to one downstream of the forced transition point.

The transport equation for the transition onset momentum thickness Reynolds number̃Reθt is
given by:

The model con-
sist of two partial
differential equa-
tions

∂(ρR̃eθt)

∂t
+

∂(ρU j R̃eθt)

∂x j
= Pθt +

∂
∂x j

[
σθt(µ+µt)

∂R̃eθt

∂x j

]
.

52 Risø–R–1649(EN)



Where the production term can be computed from the relationsbelow:

Pθt = cθt
ρ
t
(Reθt − R̃eθt)(1.0−Fθt) .

t =
500µ
ρU2 .

Fθt = min

(
max

(
Fwakee

−( y
δ)

4

,1.0−

(
γ−1/ce2

1.0−1/ce2

)2
)

,1.0

)
.

θBL =
R̃eθtµ
ρU

, δBL =
15
2

θBL , δ =
50Ωy

U
δBL , Reω =

ρωy2

µ
.

Fwake= e
−
(

Reω
1×105

)2

.

The following constants are used in the model:

ca1 = 1 , ca2 = 0.03 ,ce2 = 50 ,σ f = 1.0 , cθt = 0.03 ,σθt = 2.0 .

Additionally, the correction to handle separation inducedtransition according to [2, 3, 22] is
also implemented:

γsep = min

(
s1max

[
0,

(
Reν

3.235Reθc

)
−1

]
Freattach,2

)
Fθt ,

where:

Freattach= e−(
RT
20 )4

, ands1 = 2 .

γe f f = max(γ,γsep) . (21)

The empirical correlation needed for the critical transition onset momentum thickness Reynolds
number Reθt is given by the following relation from [2]:

Reθt = 803.73[Tu+0.6067]−1.027F(λθ,K) , (22)

where:

F(λθ,K) = 1− [−10.32λθ−89.47λ2
θ−265.51λ3

θ]e
−Tu
3.0 , if λθ ≤ 0 ,

F(λθ,K) = 1+[0.0962K̃+0.148K̃2+0.0141K̃3]

(1−e
−TU
1.5 )+0.556

[
1−e−23.9λθ

]
e
−Tu
1.5 , if λθ > 0 ,
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whereK̃ = K ·106, and the following constraints are used for numerical robustness:

−0.1≤ λθ ≤ 0.1 , (23)

−3×10−6 ≤ K ≤ 3×10−6 , (24)

Reθt ≥ 20 . (25)

At farfield boundariesγ is equal to one, while the boundary condition at the wall is zero flux.
The farfield value for thẽReθt is set according to Eqn.22 assuming the pressure gradient pa-
rameterλθ to be zero, while the wall boundary condition is zero flux.

The transition model is coupled to thek−ω SST model through the use of the effective Inter-
mittency from Eqn. 21, by modifying the production and dissipation terms in the k-equation as
shown below:

P̃k = γe f fPk and,D̃k = min(max(γe f f ,0.1),1.0)Dk ,

wherePk andDk are the production and destruction term from the turbulent kinetic energy
equation of the original SST equation. One has to be aware that theF1 blending function needs
to be adjusted in order to be able to treat fully laminar boundary layers, according to [2].
Additionally the limiter used to prevent build up of eddy viscosity in stagnation regions is
slightly different from the one originally used, see [23]:

Pk = min(µtS
2,10Dk) , compared to the original expression:Pk = min(µtS

2,20Dk) ,

and the present author has experienced problems with buildup of turbulence/eddy viscosity in
the stagnation regions of airfoils using the original formulation, while the first limiter performs
flawlessly.

It is well known that the turbulence will decay from the inletvalue, in the case of zero shear
where there is no production in the farfield. To control the level of turbulent kinetic energy at
the boundary layer edge, the farfield value can be estimated from Eqn. 26, from [23]:

k = kinlet(1+ ωinletβt)−
β∗
β , (26)

with β = 0.09 , andβ∗ = 0.0828 .

The t featuring in the above expression is a time scale, equal to the distance from the inlet to
the location of the geometry divided by the convective velocity.

5.5 Tuning of empirical relations

The two missing correlations, for Reθc andFlength both reported in [2, 3] to be a function of
Reθt must be determined before the model can be used. Similar to the original work of [2] the
tuning is done for four flat plate boundary layers with zero pressure gradient, namely the T3A,
T3A-, T3B [24–26] and Schubauer and Klebanoff [27] cases, see Table (2). Other authors have
proposed alternative correlations [4, 5], which do not agree with the present correlations. The
present author has not been able to verify the correctness ofthese correlations in connection
with the incompressible EllipSys code.Flength in the model is used to control the length of the

54 Risø–R–1649(EN)



transition region. As high values ofFlength correspond to high intermittency production and
thereby shorter transition length as also indicated in Fig.3.4 in [23], the relation used in [4]
whereFlength is proportional to the transition length seems to be wrong.

As the new transition model is very sensitive to insufficientgrid resolution, grid stretching
and the differencing scheme it is extremely important to assure that grid independent results
are obtained in connection with the calibration of the model. For all four flat plate cases three
levels of grid refinement were used to establish that the results were grid independent. The
finest grid had 512× 128 cells in chordwise and normal direction, with ay+ below 0.2 on
the finest grid level. The grid is a simple stretched Cartesian grid with constant spacing in the
flow direction and stretching in the cross-flow direction. The plate starts at the edge of the
domain, and a uniform inlet velocity profile is used. Determining the empirical correlations
by numerical optimization along with debugging the model, demands a very large amount of
computations, and it is the hope that other researcher can confirm the present expressions by
implementation in other flow solvers.

The tuning of the
model is based on
a large amount of
parametric runs

Table 2. Summary of inlet conditions for the four flat plate test cases.

Case U inlet FSTI µt/µ ρ µ
[m/s] % [kg/m3] [kg/ms]

T3B 9.4 6.500 100.00 1.2 1.8e-5
T3A 5.4 3.500 13.30 1.2 1.8e-5
T3A- 19.8 0.874 8.72 1.2 1.8e-5
S&K 50.1 0.180 5.00 1.2 1.8e-5
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Figure 51. Verification of the empirical correlations Eqn. 27 and 28 using four zero pressure
gradient flat plate cases.

The following procedure was used to determine the two functional dependencies: First a series
of parametric runs were performed where the critical Reynolds number Reθc and the constant
controlling the length of the transition regionFlength was directly specified. Secondly, having
found the values Reθc andFlength that gives the optimum agreement with the measured data, a
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second series of runs were performed determining the constant α, so that using Reθc = αR̃eθt

gave identical results with the previously determined optimum. Using this procedure, thẽReθt ,
Reθc andFlength can be determined for each of the four cases. The resulting values are listed in
Table 3.

Table 3. The result of the numerical optimization of the missing correlations forReθc and Flength

as function of̃Reθt .

Case R̃eθt Reθc α Flength

T3B 173 80 0.46 > 30
T3A 480 182 0.38 30
T3A- 967 532 0.55 0.55
S&K 1023 583 0.57 0.20

Comparing the critical Reynolds number from Table 3 determined by the numerical optimiza-
tion with the one from Eqn. 22 excellent agreement is observed, supporting the correctness of
the implementation of the model. The functional dependencyis approximated by the following
expressions:

Reθc = 0.0005· R̃e
2
θt +65(1−e−

R̃e
2
θt

1550) , (27)

and

Flength= max

[
270·e−

R̃eθt−200
110 ,200

]
. (28)

The reason why the expressions do not exactly reproduce the values from Table 3 is to account
for the feedback in the model due to non-linearities, and represents a final numerical optimiza-
tion. The results of using the determined correlation for the four flat plate cases can be seen in
Fig. 51, indicating similar agreement as observed in [2, 22]. The less than perfect agreement of
the laminar part of the skin friction for the T3B case with Tu=6.5% is not due to the correlation
functions used, but shows agreement identical to the best possible solution that can be obtained
using fixed values for Reθc and flength, see also [2]

5.6 Verification of transition prediction method

To validate the expressions derived for the two lacking correlations and the implementation of
the model especially for applications related to wind energy, two airfoil flows were computed,
as well as the flow around the NREL Phase-VI rotor. Additionally, the flow over a prolate
spheroid at zero incidence and 30 degree incidence were performed to investigate the behavior
in connection with cross flow instabilities.

5.6.1 Airfoil Flows, S809

The S809 airfoil was used as the first wind turbine related test, even though the S809 airfoil is
not typical for modern turbines. The fact that the S809 airfoil was used for the NREL Phase-VI
rotor which is used as a rotor test case in the present study, makes it interesting.

To verify the accuracy of the method, a grid refinement study was performed first using a series
of grids based on a full coarsening of a 1024×512 grid. They+ of the finest grid (refinement
ratio 4) was∼ 0.25 assuring ay+ of approximately 1 on the second coarsest level (refinement
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Figure 52. The order of accuracy of the EllipSys2D code usingthe QUICK scheme for a fully
turbulent computation top, and and a TVD version of the QUICKscheme for a transitional
computation bottom.

ratio 2). Additionally, it was assured that the expansion rate in the normal direction was approx-
imately 2.5 percent at the finest grid level for the first 360 grid points, so that the expansion
rate on the second coarsest level was below 10 percent. In order to capture the true order of
the scheme, the grids needed to be sufficiently fine to be in theasymptotic range. For the tran-
sitional case, the fact that the transition point is in fact adiscontinuity in the equations pose
an additional requirement on the chordwise resolution of the grid near the transition point. In
the present computation around 10 cells are used around the transition point on the second
coarsest level. In Fig. 52 the outcome of these studies are shown, both indicating second order
accuracy of the method is obtained already on the second coarsest level. Based on these tests,
and in agreement with the previous work of Langtry [23], the necessary grid resolution can be
estimated.

The model
greatly improves
the agreement
with measured
drag for airfoils
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Figure 53. Comparison of computed and measured lift and drag, using the new correlation
based model, the en model and fully turbulent computations for the S809 airfoil.

Having verified the numerical accuracy of the method, the newγ− R̃eθ based transition model
was compared to an existing transition model featuring anen, a by-pass and a model for sepa-
ration induced transition developed and implemented by Michelsen [1] and was also compared
to existing measurements. The S809 airfoil was computed at aReynolds number of 2 millon,
assuming natural transition. An O-grid of 512×128 cells was used based on the grid refinement
study, with a high concentration of cells near the wall to limit y+ and a low cell expansion rate.
As seen by Fig. 53 the new method agrees well with the existingextendeden method and with
measurements for the low angles of attack. Additionally, the figure shows that the transition
model improves the results compared to a fully turbulent computation with respect to agrement
with the measurements of Somers [28].
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Figure 54. Comparison of computed and measured lift and drag, using the new correlation
based model, the en model and fully turbulent computations for the NACA 63-415 airfoil.

5.6.2 Airfoil computation, NACA 63-415

Next the NACA 63-415 airfoil was investigated, an airfoil with more practical relevance for
modern wind turbines. Again an O-mesh of 512×128 cells was constructed around the airfoil,
using the HypGrid2D code [29]. The Reynolds number was specified to 3.0 million, and a
turbulence intensity of 0.04 % was used corresponding to natural transition. The angle of attack
was varied between -12 degrees and 16 degrees. In Figure 54 the computed lift is compared
for the new model, the extendeden model by Michelsen, fully turbulent computations and
measurements. Good agreement is observed for all three types of computations, with minimal
changes due to transition modeling. Looking at the computeddrag, see Figure 54, the effects of
the transition models are more evident. Here the computed drag using any of the two transition
models shows much better agreement with measured data, especially at low angles of attack.

As seen from Figure 55 showing the computedCp andCf distributions, the reason for the large
deviations between the computed drag for the transition andfully turbulent computations is
clearly illustrated at 2 and 8 degrees angle of attack, wherethe skin friction is strongly in-
fluenced by the location of the transition point on both the suction and pressure side of the
airfoil. For the two degree case, the two transition models do not predict the exact same transi-
tion location, which results in the drag being slightly too high for the enhanceden method and
slightly too low for the present model. Even though a small difference exists between the two
transition models, both models do considerably better thanthe fully turbulent computations,
see Figure 54.

5.6.3 Prolate Spheroid

The 6:1 prolate spheroid has been used for several studies oflaminar, turbulent and transitional
flows. In the present study, the data of Kreplin et al. [6, 30] is used to study the performance of
the model in 3D and illustrate the by-pass transition capabilities. As the present version of the
model do not include the effect of cross-flow instabilities,mainly the 0 degree angle of attack
case is used. The 10 and 30 degree cases may eventually be usedlater on to calibrate the model
to account for cross-flow instabilities. A single case of the30 degree case is shown to illustrate
the lack of cross-flow capacity of the model in the present version. An O-O-grid is constructed
around the spheroid, using 128 cells in the chordwise direction, 256 in the cross-flow direction
and a 64×64 block at the nose and rear of the spheroid, see Figure 56. Inthe normal direction
128 cells are used, with a minimum cell size of 1.7 ·10−7 the length of the spheroid, giving a
total of 4.7 million cells.

Four cases were computed, corresponding to Reynolds numbers of [3.2, 6.4, 8.0, 9.6] million,
based on free-stream velocity and length of the spheroid. Inthe original article [6] the tur-
bulence intensity in the tunnel is reported to be between 0.1% and 0.2%, while it is said to
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Figure 55. Comparison of computed pressure and skin friction distributions for the NACA 63-
415 airfoil.

be between 0.3% and 0.4% in other references. After calibration of the computations for a
Reynolds Number of 8.0 million, all computations were computed for a turbulence intensity
of 0.25%. The resulting wall shear stress is shown in Fig 57. The qualitative agreement with
increasing wall stress for increasing Reynolds number along with the forward shift of the tran-
sition point is well reproduced. The qualitative agreementis also good, considering that the
∆Cf /Cf = ±0.1 is reported in the measurements.

The model repro-
duces the forward
movement of the
transition point
with increasing
Reynolds number
for the spheroid

To illustrate the lack of sensitivity of the model to cross flow instabilities, a single case of
the spheroid at a Reynolds number of 7.2× 106 and 30 degrees incidence was computed. In
Fig 58 the shear stress and pressure coefficient are comparedwith measurements at the cross
stream positionx/2a = 0.05 close to the front of the spheroid. The agreement of the pressure
is good both for the transitional and the fully turbulent computations, while the shear stress is
not well predicted for either the turbulent nor the transitional computations. At this location
the measurements indicate that transition is triggered by flow separation, which is reproduced
by the transition model and clearly visible by the peak in theshear stress aroundφ = 140
degrees. in Fig. 58. At the second sectionx/2a= 0.48 the agreement of the pressure distribution
is still good for both the fully turbulent and the transitional computation, see Fig. 59, while
some disagreement is observed for both types of computations with respect to the shear stress.
At this section, the transitional computation fails to predict any laminar region. Looking at
Fig. 60 the boundary layer transition happens just upstreamof this position in the x-direction,
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Figure 56. The surface grid topology used for the 6:1 prolatespheroid. The plot shows only
every second point on the surface.
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Figure 57. The measured and computed wall shear stress distributions at four different
Reynolds numbers at 0 deg. incidence.

due to natural/bypass mechanisms, in contrast to the observation in the measurements. As the
transition process in the measurements at this position is controlled by cross flow instabilities
one should not expect the present method lacking the abilityto predict this type of transition to
give the correct answer. Even though the method cannot predict cross flow instabilities, there
is nothing that prevents this to be included through correlations in a new version of the model.

5.7 NREL Phase-VI rotor

The final application of the model is to the well-known NREL Phase-VI dataset [7, 8]. Here
the upwind cases for zero yaw angle, originally computed fully turbulent by the present author
and colleagues in connection with the blind comparison in 1999 [31] were used. The mesh
used in the present computations explicitly models the fulltwo bladed rotor, using 5.2 million
cells with 256 cells around the blade in the chordwise direction, a y+ ∼ 1 and the farfield
boundary placed 80 meters from the rotor center. The mesh haspreviously been used for yaw
computations in [32] where pictures and more details can be found.

The NREL Phase-VI rotor is based on the S809 airfoil, and as seen previously we must expect
that the laminar/turbulent transition mainly affects the airfoil characteristics for aoa’s below
10 degrees, corresponding to the low wind speeds for the present stall controlled turbine. At
the high wind speeds/aoa’s the transition even for natural transition is located very close to the
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Figure 58. The measured and computed wall shear stress and pressure coefficients at x/2a=0.05
for a Reynolds number7.2×106 and 30 deg. incidence, where phi (φ ) is angle in the cross
stream direction measured from the windward side of the spheroid.
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Figure 59. The measured and computed wall shear stress and pressure coefficients at x/2a=0.48
for a Reynolds number7.2×106 and 30 deg. incidence, where phi (φ ) is angle in the cross
stream direction measured from the windward side of the spheroid.

leading edge and the results are very similar to the fully turbulent computations.

The turbulence intensity in the NASA/Ames tunnel is reported to be around 0.5 % for the
velocity range investigated in the present computations [31, 33]. From reference [33] it is not
clear which part of the turbulent spectra is used for the intensity estimates, and therefore the
turbulence intensity is varied around the reported value toinvestigate possible influences on the
results. In the present investigation, the turbulence intensity in percent is set to the following
four values [0.5, 1.0, 1.25, 1.5]. In Fig. 5.7 the variation of the torque for the different turbulence
intensities are shown. As was also seen in the original blindcomparison, the present CFD solver
over-predicts the torque at 10 m/s for the fully turbulent computations. The figure additionally
shows how the torque decreases around stall when the turbulence intensity is lowered. For the

Figure 60. Intermittency and limiting streamlines on the surface of the spheroid at a Reynolds
number of7.2×106 and 30 deg. incidence. The flow is from bottom left and the darkregions at
the bottom left indicates laminar flow, while the light gray regions indicate turbulent flow.
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higher wind speeds, no influence of the transitional model isobserved.
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Figure 61. The low speed shaft torque of the NREL Phase-VI rotor for fully turbulent and
transitional conditions all compared to measured values.

For a low turbulence inflow it is well-known that the S809 airfoil at low aoa’s has separation
induced transition located around half chord at both suction and pressure side, producing a
pattern similar to the one observed at the 7 m/s transitionalcase in Fig 62. When the aoa is
increased above∼ 5 degrees the transition point on the upper side moves towards the leading
edge. At higher aoa’s not much difference is observed between the by-pass transitional, the
’natural’ transitional and the fully turbulent cases, due to the leading edge proximity of the
transition point, which explains the minimal differences observed in the low speed shaft torque
for high wind speeds. The reason why the inflow turbulence intensity can severely influence the
performance of the rotor close to stall, as observed in Fig 5.7 can not directly be explained by
the change in airfoil performance observed in 2D between transitional and fully turbulent cases.
This effect is connected to the three dimensionality of the flow and the rotation of the blade. For
all cases computed here, even for the fully turbulent cases,separated flow is predicted on the
suction side of the blade in the root region. For the 7 m/s case, the transition of the flow from
laminar to turbulent around half chord is capable of suppressing this spanwise component.
When increasing the wind speed to 10 m/s, the spanwise flow become stronger in the root
region. Depending on the chordwise location of the transition point at sections close to the
root, which is controlled by the inflow turbulence, the flow onthe suction side may become
totally separated. For a turbulence intensity of 1.25% the flow pattern for the transitional case
looks similar to the fully turbulent flow as seen in Fig 62. Identical patterns are observed for
turbulence intensity of 1.0% and 1.5%, while the pattern totally changes when the turbulence
intensity is lowered to 0.5%, where the computations predict the flow to be totally stalled at the
suction side of the blade.

Additionally, we need to be aware that the intensity is givenrelative to the free wind speed,
while the turbulence intensity observed by the individual blade sections is influenced by the
rotational speed of the blade. The intensity in the computations will decrease when moving
towards the tip. Using the rotational speed of the NREL Phase-VI rotor of 7.53 rad/s, a wind
speed of 10 [m/s] and a turbulence intensity of 1.5% based on free stream velocity the turbu-
lence intensity will vary from 1.20% at 1 meter radius to 0.38% at 5 meters radius. The fact
that in reality the rotationally sampled turbulence spectrum as seen by the rotating blade will
look completely different from the turbulence spectra observed by a non-rotating blade, may
change this picture. In the present version the transition model cannot account for the length
scale and rotational sampling effects on the turbulence intensity.

Looking at pictures of limiting streamlines on the blade surface for three wind speeds, the
transitional flow patterns are generally more complicated due to the presence of laminar sep-
aration/turbulent reattachment regions, which similar towhat is know for typical trailing edge
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stall on rotors has a tendency to spread radially towards theblade tip, see Fig. 62. Addition-
ally, the figures reveal that when the flow speed is beyond 15 m/s the transitional and fully
turbulent flow patterns are very similar. The effects of transition may have a severe effect on
the power production depending on the actual rotor design and airfoil sections, and from the
present investigation this may be especially true for the lower wind speeds and near the onset
of stall.

Laminar/turbulent
transition may
influence the
power production
at low to medium
wind speeds

Figure 62. Limiting streamlines on the suction side of the blades. The light gray regions indi-
cates the fully turbulent regions, while the dark regions inthe first and the third picture from
top are laminar regions.

5.8 Conclusion

The correlation based transition model of Menter et al. [2] has been implemented in the in-
compressible EllipSys2D/3D Navier-Stokes solver. Based on a series of zero pressure gradient
flat plate boundary layers, expressions for the two missing correlation functions relating Reθc

andFlength to R̃eθt have been determined. Next, the model has been used to predict the lift and
drag for two wind turbine airfoils, the S809 and NACA63-415 respectively. Both computations
show good agreement and distinct improvement in the drag predictions compared to using fully
turbulent computations. The model was used to successfullypredict transition on a 6:1 prolate
spheroid at zero degrees incidence for four different Reynolds numbers, while the model due
to lack of cross-flow by-pass transition capability was not able to predict the correct location of
transition for the spheroid at 30 degrees incidence. The model was finally applied to the well
known NREL Phase-VI rotor, corresponding the the upwind cases from the original blind com-
parison. It was shown how the transition model, through variation of the intensity of the inflow
turbulence could improve the prediction around stall, while the low wind speed and high wind
speed regions were nearly unaffected by the transition model. Generally, one must expect that
the transition process can be very important for predictingthe correct aerodynamics of rotors
depending of rotor design and airfoil choice, and that the present model can be a valuable tool.

5.9 Post Scriptum

After the present work was finished, an error was discovered in the 3D implementation of the
model. This error caused the transition model to predict a too aft location of the transition
point. The consequence of this error was a excessive sensitivity to inflow turbulence level, as
seen for the NREL Phase-VI rotor computations. Having corrected this flaw in the model, the
high sensitivity of the shaft torque on the inflow turbulencelevel disappeared, while producing
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results similar to the 1.0 % case shown in the present work forturbulence intensity varying
between 0.1 and 0.5 percent. The model is at the moment being further verified, both with
respect to the correlation functions and further applications.

5.10 Acknowledgement

The work was funded by the Danish Energy Agency under contract ENS-33033-0055 and the
European Union under contract SES6 No 019945 UPWIND and, Computations were made
possible by the use of the MARY PC-cluster at Risø National Laboratory and the DCSC, PC-
cluster Yggdrasil.

References

[1] Michelsen J.A. Forskning i aeroelasticitet EFP-2001, chapter Beregning af laminar-
turbulent omslag i 2D og 3D, page 73. Risø-R1349(DA). 2002. In Danish.

[2] Menter F.R., Langtry R.B., Likki S.R., Suzen Y.B., HuangP.G., and Völker S. A
Correlation-Based Transition Model Using Local Variables, Part I - Model Formulation.
In Proceedings of ASME Turbo Expo 2004, Power for Land, Sea, andAir, Vienna, Aus-
tria, June 14-17 2004. ASME. GT2004-53452.

[3] Menter F.R., Langtry R.B., Likki S.R., Suzen Y.B., HuangP.G., and Völker S. A
correlation-based transition model using local variables, part ii - test cases and indus-
trial applications. InProceedings of ASME Turbo Expo 2004, Power for Land, Sea, and
Air, Vienna, Austria, June 14-17 2004. ASME. GT2004-53454.

[4] Toyoda A., Misaka T., and Obayashi S. An Application of Local Correlation-Based Tran-
sition Model to JAXA High-Lift Configuration Model. AIAA Paper 2007-4286, June
2007.

[5] Misaka T. and Obayashi S. Application of Local Correlation-Based Transition Model
to Flows around Wings. 44th AIAA Aerospace Sciences Meetingand Exhibit, January
2006. AIAA 2006-918.

[6] Kreplin H.P., Vollmers H., and Meier H.U. Measurements of the Wall Shear Stress on
an Inclined Prolate Spheroid.Zeitschrift f̈ur Flugwissenschaften und Weltraumforschung,
(4):248–252, 1982.

[7] Simms D., Hand M.M., Fingersh L.J., and Jager D.W. Unsteady Aeorydnamics Experi-
ment Phases II-IV: Test Configurations and Available Data Campaigns. NREL/TP -500-
25950, Nat. Ren. Energy Lab., Golden, CO, 1999.

[8] Fingersh L., Simms D., Hand M., Jager D., Cortrell J., Robinsion M., Schreck S., and
Larwood S. Wind Tunnel Testing of NREL’s Unsteady Aeordynamics Experiment. In
2001 ASME Wind Energy Symposium, pages 129–135, Reno, NV, January 11-14 2001.
ASME. AIAA-2001-0035.

[9] Hand M., Simms D., Fingersh L.J., Jager D., and Larwood S.Cotrell J., Schreck S. Un-
steady Aeorydnamics Experiment Phases VI: Wind tunnel TestConfigurations and Avail-
able Data Campaigns. NREL/TP -500-29955, Nat. Ren. Energy Lab., Golden,CO, 2001.

[10] Michelsen J.A. Basis3D - a Platform for Development of Multiblock PDE Solvers. Tech-
nical Report AFM 92-05, Technical University of Denmark, 1992.

[11] Michelsen J.A. Block structured Multigrid solution of2D and 3D elliptic PDE’s. Tech-
nical Report AFM 94-06, Technical University of Denmark, 1994.

[12] Sørensen N. N. General Purpose Flow Solver Applied to Flow over Hills. Risø-R- 827-
(EN), Risø National Laboratory, Roskilde, Denmark, June 1995.

64 Risø–R–1649(EN)



[13] Rhie C. M. A numerical study of the flow past an isolated airfoil with separation. PhD
thesis, Univ. of Illinois, Urbana-Champaign, 1981.

[14] Patankar S. V.Numerical Heat Transfer and Fluid Flow. Hemisphere, 1980.

[15] Patankar S. V. and Spalding D. B. A Calculation Prodedure for Heat, Mass and Momen-
tum Transfer in Three-Dimensional Parabolic Flows.Int. J. Heat Mass Transfer, 15:1787,
1972.

[16] Issa R. I. Solution of the Implicitly Discretised FluidFlow Equations by Operator-
Splitting. J. Computational Phys., 62:40–65, 1985.

[17] Issa R. I., Gosman A. D., and Watkins A. P. The Computation of Compressible and In-
compressible Recirculating Flows by a Non-iterative Implicit Scheme.J. Computational
Phys., 62:66–82, 1986.

[18] Khosla P. K. and Rubin S. G. A diagonally dominant second-order accurate implicit
scheme.Computers Fluids, 2:207–209, 1974.

[19] Menter F. R. Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows.
AIAA-paper-932906, 1993.

[20] Sørensen N.N. Rotor computations using a ’Steady State’ moving mesh. IEA Joint Action
Committee on aerodynamics, Annex XI and 20, Annex XI and 20. Aero experts meeting,
Pamplona, Spaine, May 2005.

[21] Demirdzic I. and Peric M. Space conservation law in finite volume calculations of fluid
flow. Int. J. Numer. Methods Fluids, 8:1037–1050, 1988.

[22] Menter F.R., Langtry R., and Völker S. Transition Modelling for General Purpose CFD
Codes.Flow Turbulence Combust, 77(1-4):277–303, November 2006.

[23] Langtry R.B., Gola J., and Menter F.R. Predicting 2D Airfoil and 3D Wind Turbine Rotor
Performance using a Transition Model for General CFD Codes.AIAA-paper-2006-0395,
2006.

[24] Savill A.M. Some recent progress in the turbulence modelling of by-passtransition, page
829. Elsevier, The Netherlands, 1993.

[25] Savill A.M. One-point closure applied to transition, pages 233–268. Kluwer, Cambridge,
1996.

[26] Savill A.M. By-Pass transition using Conventional Closures, chapter 17, pages 464–492.
Cambridge University Press, Cambridge, 2002.

[27] Schubauer G.B. and Klebanoff P.S. Contribution on the Mechanics of Boundary Layer
Transition. NACA-TN- 3489, NACA, 1955.

[28] Somers D.M. Design and Experimental Results for the S809 Airfoil. NREL/SR- 440-
6918, National Renewable Energy Laboratory, US, Golden, Colerado 80401-3393, Jan-
uary 1997.

[29] N.N Sørensen. HypGrid2D a 2-D Mesh Generator. Risø-R- 1035-(EN), Risø National
Laboratory, Roskilde, Denmark, Feb 1998.

[30] Meier H.U. and Kreplin H.P. Experimental Investigation of the Boundary Layer Tran-
sition and Separation on a Body of Revolution.Zeitschrift f̈ur Flugwissenschaften und
Weltraumforschung, (2):65–71, Marts/April 1980.

[31] Simms D., Schreck S., Hand M., and Fingersh L.J. NREL Unstead Aeorydnamics Exper-
iment in the NASA-Ames Wind tunnel: A Comparison of Predictions to Measurements.
NREL/TP -500-29494, Nat. Ren. Energy Lab., Golden, CO, 2001.

Risø–R–1649(EN) 65



[32] Sørensen N.N.and Michelsen J.A. and S. Schreck. Application of CFD to wind turbine
aerodynamics. In Tsahalis D.T., editor,CD-Rom proceedings. 4. GRACM congress on
computational mechanics, Patras, Greece, June 2002.

[33] Zell P.T. Performance and Test Section Flow Characteristics of the National Full-Scale
Aerodynamics Complex 80- by 120-Foot Wind Tunnel. NASA TM 103920, NASA, Jan-
uary 1993.

66 Risø–R–1649(EN)



6 Verification of Airfoil Design With Focus on

Transition

Author:
Christian Bak, Mads Døssing, Helge A. Madsen, Peter B. Andersen, Mac Gaunaa (Risø DTU)
Peter Fuglsang, Stefano Bove (LM Glasfiber)

This chapter presents wind tunnel tests on three different airfoils in the LM Glasfiber wind
tunnel, Denmark. The objectives with the wind tunnel tests were two fold: 1) To detect the
transition from laminar to turbulent flow on airfoil surfaces and 2) to verify the methodology for
designing airfoils with high lift-drag ratio, insensitiveto surface contamination and turbulence
intensity and showing high bending stiffness.

Approximately 70 microphones were mounted in the surface ofeach of the three airfoils
NACA0015, Risø-B1-18 and Risø-C2-18 to measure the transition from laminar to turbu-
lent flow. Information such as the transition point as a function of the Reynolds number, the
Tollmien-Schlichting frequency building up upstream of the transition point and energy spectra
at different positions of the airfoil surface are availablefrom this measurement technique. Also,
good agreement between measurements and theen transition model was seen.

The Risø-C2 airfoil family is dedicated for MW-size wind turbines. It was designed to have
high maximum lift coefficient, while maintaining high aerodynamic efficiency. Given these
characteristics the airfoil was designed with maximum stiffness. Finally, because of the vary-
ing wind turbine conditions the airfoil was designed to be resistant to surface contamination and
varying turbulence intensity. The design was carried out with a quasi 3D multi disciplinary op-
timization tool to take into account the complete blade shape and rotor flow. Thus, the design of
the Risø-C2-18 airfoil was verified and showed good agreement with predicted characteristics.

6.1 Nomenclature

AOA Angle of attack
AOAr Angle of attack relative to zero lift AOA
ak Fourier coefficient
bk Fourier coefficient
c Chord length
cl Lift coefficient
cd Drag coefficient
cp Normalized coefficient for the pressure on the airfoil surface
CP Normalized coefficient for the wind turbine rotor power
f Frequency
k Fourier index
Ma Mach number
Re Reynolds number
U Flow speed
x Coordinate in chordwise direction
µ1 Mean of the power spectra
ρ Air density
σ Standard deviation

6.2 Introduction

The uncertainty of the turbulence intensity for the inflow towind turbines in the very small
scales makes the performance of wind turbine airfoils uncertain. Also, Computational Fluid
Dynamics (CFD) has shown significant differences in the aerodynamic performance if either
fully turbulent flow or transitional flow are assumed, see Chapter 5. Thus, it is important to
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know 1) how the turbulence intensity is in the small scales and 2) how trustworthy the models
are predicting the transition. This fact motivated Risø DTUto start up an investigation on the
flow behaviour in small scales, i.e. eddies of the size of the chord length or smaller. This led to
the development of a technique using microphones, which canmeasure pressure vibrations up
to 20kHz. This technique was in comparison to e.g. Kulite sensors tested in the VELUX wind

A technique us-
ing microphones
was developed to
measure the flow
behaviour in the
very small scales.

tunnel December 2006 and June 2007 to investigate the applicability for this purpose. It turned
out that the microphones were both robust and gave valuable information.

From October to December 2007 three wind tunnel test were carried out in the LM Glasfiber
wind tunnel where the Risø-B1-18, Risø-C2-18 and NACA0015 were tested. The latter airfoil
was tested because the airfoil is well known and has been tested in similar tests before [1].
The two former airfoils were tested to investigate the design philosophy and to investigate how
much the simulation models can be trusted, e.g. in the airfoil design process. This knowledge
is important because design of tailored airfoils for wind turbine rotors is essential for the con-
tinuing development of wind turbines. It has been known for decades that wind turbine airfoils
should differ from traditional aviation airfoils in choiceof design point, off-design characteris-
tics and structural properties. The development of wind turbine airfoils has been ongoing since
the mid 1980’s. Significant efforts have been made by Tanglerand Somers [2], Timmer and
Van Rooij [3], Björk [4] and Fuglsang and Bak [5]. For wind turbine airfoils operating in the
atmospheric boundary layer there is influence from the turbulence intensity and contamination
of bugs and dust and the airfoils should show both high performance in terms of high lift-drag
ratio and maximum lift resistant to leading edge roughness.The Risø-C2 airfoil family was
designed for MW-size wind turbines with variable speed and pitch control and many charac-
teristics from the Risø-B1 airfoil family were inherited because this airfoil family has shown
to be both efficient and to have a high degree of insensitivityto leading edge roughness. How-

The Risø-C2 air-
foil family was
designed. ever, evaluating the Risø-B1 family has also shown the need for maximizing the stiffness and

thereby maximizing the moment of resistance around the chord axis, i.e. the flap direction.
Furthermore, the new airfoil family was designed to have a high degree of compatibility.

Key design objectives for the new airfoil family were twofold: (1) To maximize the lift-drag
ratio and (2) To have a highcl ,max. Insensitivity of maximum lift to leading edge roughness was
ensured by two additional design objectives: (1) Having suction side transition from laminar
to turbulent flow in the leading edge region for angles of attack close to but belowcl ,max and
(2) Obtaining a highcl ,max with simulated leading edge roughness. Further design objectives
ensured good structural and aerodynamic compatibility between the different airfoil sections
and good structural properties for inboard airfoils.

The design was carried out with a Risø in-house multi disciplinary optimization tool, AIR-
FOILOPT, that has been developed since 1996 [6], which was extended to include a complete
blade with its structural surface characteristics and rotor aerodynamics. The numerical opti-
mization algorithm works directly on the airfoil shape providing a direct and interdisciplinary
design procedure, where multiple design objectives for aerodynamics and structure may be
handled simultaneously. This chapter describes the microphone measurements and the design

The Risø-C2-18
airfoil design was
verified. and verification of the Risø-C2 airfoil family.

6.3 Measurement set up in LM Glasfiber wind tunnel

The Risø-B1-18, Risø-C2-18 and NACA0015 airfoils were tested in the LM Glasfiber LSWT
wind tunnel in Lunderskov, Denmark, see Figure 63.

The Risø-B1-
18, Risø-C2-18
and NACA0015
airfoils were
tested in the LM
Glasfiber wind
tunnel.

The tunnel is of the closed return type with a closed test section and with a cross section of
1.35×2.70 m. The flow speed was between 26.7 m/s to 100 m/s with a turbulence intensity of
around 0.1%. The airfoils had a chord length of 900 mm and the width in spanwise direction
was 1350 mm. The Reynolds number was betweenRe= 1.6×106 andRe= 6.0×106, which
is the maximum attainable. The airfoils were mounted on a turntable to measure high preci-
sion angles of attack. The absolute pressure was measured using 96 pressure taps using a PSI
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Figure 63. The LM Glasfiber wind tunnel.

measurement system with a sampling rate of 5Hz. The aerodynamic characteristics were ob-
tained from the pressure distributions and from the wake rake traversing in spanwise direction
for 50sec. In the airfoil section wake, a wake rake consisting of 54 pressure probes was posi-
tioned. The data acquisition system used was the PSI system,see [7]. Microphones of type

Microphones
were mounted
in the airfoil
surfaces.Sennheiser KE 4-211-2 with a linear characteristic from 30Hz to 20kHz were surface mounted

in the airfoils from the very leading edge along the chord to close to the trailing edge, see
Figure 64.

Figure 64. The microphones mounted in the airfoil surface.

The data acquisition was carried out using National Instruments CampactRIO, cRIO-9052
which sampled with 50kHz. Thus, simultaneous sampling of all microphone signals was carried
out. Besides the microphones in the airfoil surface, also microphones outside the test section
were mounted to measure the background noise from motors etc.

Steady state polar measurements were conducted with several different configurations of the
airfoils, e.g. 1) Clean surface with no aerodynamic devicesmounted on the airfoil (Clean) and
2) Leading edge roughness (LER) simulated by 90 zigzag tape of height 0.40 mm and width 3
mm, where the zigzag tape was mounted at the suction side atx/c = 0.05 and at the pressure
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side atx/c= 0.10. This is labeled standard roughness. Also, two additional configuration with
the same kind of zigzag tape atx/c = 0.02 on the suction side and bump tape with height 0.12
mm were used. The different configurations were as well tested with two different grids in the
tunnel upstream of the airfoils to generate additional turbulence, see Figure 65. The first grid
(grid1) had a distance between the plates in the grid of 200 mmand the second grid (grid2) had
a distance between the wires of 100 mm.

Figure 65. The LM Glasfiber wind tunnel including grid upstream of airfoil.

6.4 Method for transition detection

Sections of three different airfoils were equipped with microphones embedded in the surface,
the Risø-B1-18, Risø-C2-18 and NACA0015 airfoils. 2D flow properties were measured at
Reynolds numbers from 1.60×106 to 6.00×106 and Mach numbers in the range from 0.08 to
0.301. This corresponds well to the conditions of a full scale horizontal axis wind turbine. An

2D flow measure-
ments are made
at Reynolds and
Mach numbers
corresponding
to wind turbine
operation.

efficient numerical method for automatic detection of transition was developed and the pro-
cessing of microphone data has been established. Literature about experimental determination
of transition is very limited and in most cases at too low Reynolds numbers. Therefore, a direct
comparison with existing results has not been made. A thorough presentation of the experiment
and data processing is given in the report [8]. A comprehensive set of results is given in the
Appendix reports [9], [10] and [11].

Time series of pressures have been obtained simultaneouslyat all microphone positions for
a constant angle of attack,ReandMa number. The transition is then detected by observing
how statistical quantities varies over the chord. Two quantities, the sample standard deviation
(σ) and the mean of the power spectra (µ1), are especially important. The former is calculated
directly from the sample vectorY

Y = {y1 . . .yn . . .yN}
T

σ =

√
1
N

N

∑
n=1

(yn− Ȳ)
2 where Ȳ =

1
N

N

∑
n=1

yn

1Based on incompressible speed of sound = 333m/s
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The latter,µ1, is calculated from the power spectrum (Ps) as a raw moment of order 1 about
zero

Ps =
√

a2
k +b2

k

µ1 =

∫ fNy
0 f Psd f
∫ fNy

0 Psd f

Whereak andbk are Fourier coefficients. The integral is calculated numerically using the ap-
propriate relation betweenk and frequencyf . fNy is the Nyquist frequency, i.e. the upper bound
of frequencies in the power spectrum. This formulation is equivalent to normalizing the power
spectrum to a probability distribution and calculating themean. From a physical point of view
higher values ofµ1 means that a larger proportions of the energy at high frequencies are present
relative to low frequencies. Notice the special definition of the power spectrum.

Figure 66 showsσ andµ1 plotted against angle of attack (α) and relative chordwise position
(x/c) for a clean Risø-B1-18 airfoil atRe= 3.0×106 . σ is scaled by the dynamic pressure
(0.5ρU2), but it is noted that this is not a sufficient scaling parameter and σ

0.5ρU2 decreases
with increasing Reynolds number. At transitionσ increases and in some regions there is even
a clear peak. In stall there is a substantial increase inσ close to the trailing edge. In general,
unfortunately, the data is not as easily interpreted as in this case.

µ1 varies in a well defined manner and at transition it increasesmonotonically to a near constant
value. This is true in practically all cases and the only important variation is the length in chord-
wise direction over whichµ1 is increasing. The latter can be interpreted as the distanceover

Transition can
be detected by
observing an
increase in the
mean of Fourier
spectra.

which the full transition occurs, but this is not known as a fact because only the initial instabil-
ity can be determined exactly from observations of Tollmien-Schlichting frequency peaks. The
exact position of a fully-developed turbulent boundary layer can not be determined. To enable
a stable numerical analysis the transition point (xtr ) is defined to be the point of maximum
positive derivative in the chordwise direction. I.e. formally as

xtr ≡

{
x |

dµ1

dx

∣∣∣∣
x
= max

(
dµ1

dx

)}
(29)

Figure 67 (left) shows the contours of Figure 66 (right) , i.e. contours ofµ1. There is a clear band
at transition and the center of this corresponds toxtr . Transition points calculated in the airfoil
flow simulation code XFOIL [12] are also shown, corresponding to turbulence intensities of
the incoming flow of 0.563%, 0.245%, 0.106% and 0.07%, respectively. 0.07% corresponding
to free transition. The agreement is good except forα <-5deg, which is typical for the XFOIL
computations. Figure 67 (right) shows the Fourier spectra at various chordwise positions at
7o angle of attack. The instability around the Tollmien-Schlichting frequency is seen as well
as how a broad band of frequencies quickly develops at transition. Due to numerical issues
there is an uncertainty of approximately 5% onxtr if detected within 10% of the leading edge,
however in most cases this is not important because the transition is known to be very close to
the leading edge.

6.5 Results from transition detection

In the following only selected results for the suction side is presented and without a turbulence
grid mounted. The turbulence intensity in the tunnel is believed to be close to the conditions
that are present at normal operation for wind turbine rotors.

Figure 68 showsxtr detected on clean airfoils. Despite the uncertainty near the leading edge
(i.e. at low values ofxtr /c), it is clearly seen at what angle the transition shifts fastto the leading
edge. The Risø-C2-18 airfoil performs best, with a shift around 8deg atRe= 6.0×106 . The

The Risø-C2-18
airfoil performs
best. The results
are dependent on
Re.

transition moves forward with increasing Reynolds number for all airfoils, and the forward
shift happens at lower angles of attack.
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B118-Re3a, Suction side, Re = 3.0e6, f1 = 0 Hz, f2 = 25000 Hz
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Figure 66. Scaled pressure standard deviation (left) and mean of Fourier spectrum (right) plot-
tet against angle of attack and chordwise position
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Figure 67. Contours of Figure 66.right (left) and Fourier spectra atα=7 o (right)

Figure 69 showsxtr detected on airfoils with trip wire/bump tape. The effect isstrongly de-
pendent on the Reynolds number. All airfoils are largely unaffected atRe= 1.6×106 . At

The effect of
trip wire/bump
tape is strongly
dependent onRe. Re= 3.0×106 the transitions shifts to the leading edge atα values 1-2deg lower than in the

clean case. AtRe= 6.0×106 this happens at approximately zerodeg angle of attack, which
is substantially lower than in the clean case for Risø-B1-18and Risø-C2-18. The Risø-C2-18
airfoil has a visible hysteresis effect atRe= 1.6×106 due to the angle of attack being increased
into deep stall and then lowered. This effect is seen in practically all measurements.

ZZ90 and LER forces transition at all Reynolds numbers.
ZZ90 and LER
forces transition
independent of
Renumber.

6.6 Discussion of the transition detection

The numerical method for transition detection based on Eq. (29) is very stable and has some
nice numerical properties. Contour plots ofµ1, e.g. Figure 67, gives a clear picture of the tran-
sition process by manual inspection. A major drawback is thenumerical detection of the maxi-
mum derivative which in the 2D case is troublesome near the leading edge. On full size turbines
the 3D flow properties may affect the numerical stability in regions away from the leading edge
but this is not yet known for sure. The Fourier spectra can be made from relatively few samples
(e.g. 4096 measurements of pressure) which can be sampled inapproximately 0.1seconds and
corresponds to a rotation of a large turbine of approximately 5deg. It is hoped that flow prop-
erties are relatively constant in this time period, allowing the properties on rotating turbines to
be measured as function of time/position.

XFOIL predicts the transition point well for the clean Risø-B1-18 and Risø-C2-18 airfoils,
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Figure 68. Transition points on clean airfoils.

with the exception of inflow angles less than -5deg. These airfoils are designed in a manner
which can be modeled accurately in XFOIL and the results confirm this. Only a limited number
of calculations with forced transition has been made and theagreement with experimental
data is not known. It is noticed that the effect of tripwire / bump tape depends strongly on
Reynolds number and does not necessarily force transition,and therefore it is difficult to model
numerically. The agreement between XFOIL and measured transition for a clean NACA0015
airfoil is not good except atRe=1.6×106 . For larger Reynolds numbers the calculations are too
optimistic. Details can be found in [11].

Turbulence grids were mounted in the wind tunnel in order to increase the turbulence intensity.
This clearly enhances transition but it is difficult to make any general conclusions and the cases
must be studied individually. The turbulence intensity with grids mounted has not yet been
successfully measured and it is therefore not known if the turbulence intensities are of the same
scale as for full size turbines.

6.7 Method for airfoil design

The airfoil design tool can be divided into a 2D design tool and a 3D design tool. The 2D design
tool has been used to design the former Risø airfoil families. It uses a direct method where
numerical optimization is coupled with both the flow solver XFOIL [12], which is a panel code
with inviscid/viscous interaction, and the flow solver EllipSys2D, which is a code based on the
solution of the Navier Stokes equations in 2D [13], [14], [15]. A number of design variables
form the airfoil shape, which is optimized subject to designobjectives and constraints. Direct
methods, such as the method used, are basically interdisciplinary and multi-point and they
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Figure 69. Transition points on airfoils with trip wire/bump tape

allow direct use of integrated response parameters such as airfoil cl andcd directly as design
objectives. Also, boundary layer response parameters, e.g., skin friction and transition point
location can be constrained or used as objectives. Structural characteristics can be controlled
by constraining the shape in terms of coordinates, gradients and curvatures.

The 3D tool is developed for the design of the new airfoils andmodels a complete blade with
all its airfoil sections to form the blade surface and compute the aerodynamic performance
of the rotor. Gradients and curvatures in the direction fromthe root to the tip were included
to quantify the compatibility. Also, the 3D tool opens up thepossibility of maximizing the
rotor power performance in terms of, e.g. the power coefficientCP. With the 3D tool follows a
graphical user interface so that information about the geometry can either be extracted for use
in the optimization process or existing blades can be inspected visually and quantitatively.

6.7.1 Design algorithm

The design variables are changed in an optimization problemto minimize the objective func-
tion. This is done subject to constraints. In this case the design variables are the control points
that describe the airfoil shape. The constraints are side values for the design variables and
bounds on response parameters from flow and structural calculations. A traditional Simplex
optimizer was used with a finite difference sensitivity analysis. This is a simple and robust so-
lution method, which however, is computationally expensive because of the large number of
necessary flow calculations. The optimization process is iterative involving numerous calcula-
tions of flow and structural response parameters where the design gradually changes to improve
the objective. The calculated flow and structural response parameters are used to estimate the
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value of the objective function and the constraints. Multiple angles of attack are calculated to
allow off-design optimizations. The combination of flow andstructural responses allows mul-
tidisciplinary optimization (MDO).

6.7.2 Geometry description

A smooth shape is important for the optimization results. The 2D airfoil shape was represented
by a single B-spline defined from the trailing edge around theairfoil contour by a set of control
points. The blade shape was represented by cubic B-splines fixed at the top and bottom of
the 2D sections and at the leading and trailing edge. In between these four fixed points at the
sections the splines were distributed evenly along the surface length. Creation of the blade is
seen in Figure 70, which shows a screen dump from the 3D tool reflecting the blade planform
at the top with a number of corresponding master airfoil sections with thick lines. In between
the master airfoil sections are seen thin, grey lines showing the interpolated airfoil sections
from the connecting curves from the root to the tip and forming the mesh. At the bottom of the
screen dump is seen a 2D airfoil section in the blade.

Figure 70. Screen dump of a window from the design tool showing the blade planform.

The splines creating the 2D sections and the connection between the 2D sections form a mesh
from where coordinates, gradients and curvatures can be extracted and used either for inspec-
tion or for use in the optimization process.

6.7.3 Flow analysis

The XFOIL code by Drela was used for the flow calculations during the optimization [12]. For
a givenAOAandRe, XFOIL provides thecp-distribution andcl , andcd. In addition, numerous
boundary layer parameters are calculated. Transition was modeled by theen method withn =
9. Prescribing transition to 0.1% after the leading edge on the suction side and at 10% after
the laeding edge on the pressure side simulated leading edgeroughness. XFOIL is well suited
for optimization because of the fast and robust viscid/in-viscid interaction scheme. However,
the integral boundary layer formulation is not well suited for separated flows. XFOIL should
therefore be used with caution atcl ,max. Others find that it may be necessary to modify or
even tune XFOIL to better match measured results [3], but thecomputations seems to compare
relatively well to EllipSys2D computations.
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6.8 Strategy for airfoil design

The desirable airfoil characteristics form a complex matrix of properties of which some are in
conflict with others. This has been a topic of discussion in the literature, e.g., in [16],[17] and
[18]. There seems to be consensus on most of the general desirable characteristics. However,
the means of achieving them are strongly related to the design method and the philosophy of
the designer. The new airfoils were designed for operation on a wind turbine rotor. The force
that contributes to the rotor power is the tangential force,T, whereas the force that contributes
to the rotor thrust, is the normal force,N. As it was the case with Risø-B1 airfoil familyT can
be used as the objective function, but also the lift-drag ratio (L/D) can be used. The latter is a
common measure of the airfoil efficiency becauseL can be considered as the production and
D can be considered as the loss. The new airfoil family was designed with maximumcl − cd

ratio. Figure 71 shows in terms of acl vs.AOAplot the different characteristics that are taken

The Risø-C2
family was de-
signed with high
maximum cl
and maximum
c− l −cd.

into account in the design process.

Figure 71. Sketch of the design strategy for wind turbine airfoils.

6.8.1 Structure

A wind turbine blade may be divided into the root, mid and tip parts. The mid and tip parts are
determined mainly from aerodynamic requirements whereas structural objectives are relevant
mainly for the inboard part of the blade, e.g., fort/c> 24%. Thet/c ratio is the most important
parameter and also important are the location of the maximumthickness on the chord and the
local shape of the airfoil. Another issue is the geometric compatibility between airfoils of the
same family to ensure smooth transition from one airfoil to the other. Geometric compatibility
was ensured by using the new 3D tool, where two airfoils witht/c=15% and 24%, respectively,
designed with the 2D tool, formed the basis for the remainingairfoil sections, 18%, 21% and
30%, by interpolating and even extrapolating between the two airfoils. These interpolated and
extrapolated airfoils were adjusted to maximize the aerodynamical and structural performance.
Because of the desire for highcl ,max significant camber was allowed on the pressure side. The

The Risø-C2
family was de-
signed with high
stiffness and
compatibility be-
tween the airfoil
sections.

thickness of the trailing edge was kept finite but thin to minimize trailing edge noise.

6.8.2 Insensitivity of cl ,max to leading edge roughness

Roughness in the airfoil leading edge region formed by accumulation of dust, dirt and bugs
is well recognized as a main design driver for wind turbine airfoils [16]. The new airfoils
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were designed for minimum sensitivity ofcl ,max to leading edge roughness by two separate
design objectives: (1) The suction side natural transitionpoint was constrained to move to
the very leading edge forAOAaround 3deg belowcl ,max predicted with forced transition. This
determined the local shape of the leading edge region so thata small pressure rise at the leading
edge caused natural transition to turbulent flow at the leading edge a few degrees beforecl ,max.
Premature transition caused by roughness will therefore beeliminated close tocl ,max by a very
forward position of the natural transition point. (2) The level of cl ,max resulting from a flow
analysis with simulation of leading edge roughness, i.e. forced transition, was constrained to
a sufficiently high value compared to results from analysis with smooth flow. This shapes the

The Risø-C2
family was de-
signed with high
insensitivity to
leading edge
roughness.

airfoil suction side so that the pressure recovery region does not separate prematurely because
of an increase of the boundary layer thickness caused by roughness, which would reducecl ,max.
Even with this constraint massive roughness will inevitably reducecl ,max. Also, the existence
of minor leading edge roughness will result in an unavoidable reduction in thecl −cd ratio.

6.8.3 Design cl ,max

The airfoil sections were designed for highcl ,max. This was chosen because the airfoil sections
can be used for design of slender blades and in general ensuring minimum fatigue loads and
extreme loads. However, a disadvantage from this choice is the loss of stiffness for the blade
if the relative airfoil thicknesses are maintained even though the chord distribution is reduced.
Thus, the choice of high maximum lift is closely related to the choice of concept in the blade
design. No matter which concept is used in the blade design, the inner part of the rotor needs
airfoil sections with both high relative thickness and highmaximum lift.

6.8.4 Design objective

A compound objective function was defined as a weighted sum ofcl − cd ratio values result-
ing from multiple angles of attack in the designAOA range. Some were for a clean airfoil
surface whereas others were for flow with simulated leading edge roughness to ensure good
performance at both conditions. The airfoil designAOA-region is also determined from the re-
quirements to the wind turbine off-design operation. Because of the stochastic nature of the
wind, turbulence gusts and wind direction changes will always lead to some off-design opera-
tion due to non uniform inflow. However, the degree of off-design is mainly given by the power
control principle. In most cases it is desirable that the design AOA-region is close tocl ,maxsince
this enables low rotor solidity and/or low rotor speed. For all the new airfoils the design point
region wasAOAr ∈ [5◦; 14◦]. This should lead to an expected highcl ,max at aroundAOAr =16◦

corresponding tocl ,max = 1.8 at a lift curve slope of 2π/rad. The airfoil family was designed
for Re= 6×106, because this corresponds to the largest blade designs.

6.8.5 The Risø-C2 family

The airfoil family is seen in Figure 72. The airfoils show high compatibility between the differ-
ent airfoil thicknesses. Also, a high degree of camber is seen close to the trailing edge to obtain
highcl ,max.

6.9 Verified performance of the Risø-C2-18 airfoil

In the followingcl vs. cd andcl vs. AOA are shown for the Risø-C2-18 and the Risø-B1-18
airfoils which were tested in the LM Glasfiber wind tunnel. The results shown forRe= 6×106.
The characteristics were computed using XFOIL assuming forced transition from the very lead-
ing edge and free transition from laminar to turbulent flow. Figure 73 show the characteristics
for the Risø-C2-18 airfoil with clean airfoil surface. Relatively good agreement between the

Good agreement
is seen between
the measured and
computed airfoil
characteristics.
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Figure 72. The Risø-C2 airfoil family.

wind tunnel test and the computations with XFOIL assuming free transition is seen. However,
maximum lift seems to be reduced somewhat in the tunnel compared to the computations. Also,
the transition point compared to the computations is shown and good agreement is seen.
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Figure 73. Left: cl vs. transition point, Mid: cl vs. cd, Right: cl vs. AOA for the Risø-C2-18
airfoil at Re= 6×106 with clean surface. Also, computations with XFOIL are shownwith the
assumption of free transition (with n= 6 and n= 8) and forced transition from the leading
edge.

Figure 74 shows the aerodynamic characteristics for Risø-C2-18 airfoil compared to Risø-
B1-18. It is seen that the characteristics for the two airfoils are similar, however with the

The airfoil char-
acteristics for the
Risø-C2-18 and
Risø-B1-18 are
very similar.

Risø-C2-18 airfoil showing significantly higher lift-dragratio.
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Figure 74. Left: cl vs. cd and cl vs. transition point, Mid: cl vs. AOA, Right: cl/cd vs. cl for the
Risø-C2-18 and Risø-B1-18 airfoils at Re= 6×106 with clean surface.

Figure 75 shows the aerodynamic characteristics for Risø-C2-18 airfoil with leading edge
roughness. It is seen that the leading edge roughness results in increasing drag, but the loss
in cl ,max is very limited. Also, the comparisons to the XFOIL computations show very good
agreement between the assumption of forced transition fromthe leading edge on the suction
side and the aerodynamic characteristics from tests with the leading edge roughness.

Comparing the performance of the Risø-C2-18 airfoil with the Risø-B1-18 airfoil with leading
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Figure 75. Left: cl vs. cd, Right: cl vs. AOA for the Risø-C2-18 airfoil at Re= 6×106 with clean
surface and leading edge roughness. The measurements are compared to XFOIL computations
assuming fully turbulent flow.

edge roughness, Figure 76, shows a very similar behaviour ofthe two airfoils, however with
slightly highercl − cd ratio for the Risø-B1-18 airfoil forcl < 1.2, but slightly highercl − cd

ratio for the Risø-C2-18 airfoil forcl > 1.2 until cl ,max. In general it is seen that thecl −cd ratio
is decreased to a value of around 100, not dependent on thecl −cd ratio for the clean configu-
ration. This loss incl −cd ratio is believed to be unavoidable. Thus, the desired insensitivity to
leading edge roughness for wind turbine airfoils concerns primarily the value ofcl ,max.
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Figure 76. Left: cl vs. cd, Mid: cl vs. AOA, Right: cl/cd vs. cl for the Risø-C2-18 and the
Risø-B1-18 airfoils at Re= 6×106 with clean surface and leading edge roughness.

The Risø-C2-18
airfoil shows
similar roughness
insensitivity as
Risø-B1-18.Figure 77 shows lift and drag for the airfoil with three levels of inflow turbulence. Concerning

cl ,max it seems that it is increasing somewhat with the level of turbulence. However, the drag The Risø-C2-18
airfoil is insensi-
tive to turbulence
intensity.

is increasing with the turbulence level, which is expected.This results in a lower level of the
lift-drag ratio as seen in Figure 77. The increased turbulence intensity seems to work as a kind
of vortex generators.

6.10 Conclusions

This chapter presented results from the wind tunnel tests onthree airfoils in the LM Glasfiber
wind tunnel. Two subjects were described 1) transition detection and 2) Verification of the
Risø-C2-18 airfoil compared to the Risø-B1-18 airfoil.

A large amount of microphone data has been processed with reference to transition detection
and selected results are presented. All results show expected values and the method for transi-
tion detection is well established. The only drawback in themethod is uncertainty with respect
to the accuracy of the detected values near the leading edge.In all cases contour plots like Fig-
ure 67 shows clearly transition and also the onset of instability as well as the chord over which
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Figure 77. Left: cl vs. cd, Right: cl vs. AOA for the Risø-C2-18 airfoil at Re= 6×106 with clean
surface. Three different levels of inflow turbulence are seen in terms of no turbulence grid in
the tunnel and two different turbulence grids.

transition develops.

The Risø-C2 airfoil family for wind turbines is developed considering structural stiffness and
compatibility in addition to excellent aerodynamics. For this purpose the airfoil design tool
AIRFOILOPT was used. AIRFOILOPT has a 3D description of the airfoils mounted on a
blade and the possibility of computing gradients, curvatures and angles at the surface. Also,
the design tool makes it possible to compute the rotor flow in terms of the Blade Element
Momentum theory. Furthermore, a method of designing an airfoil family was developed. Two
airfoils were designed without taking the 3D shape into account. They were positioned at the
tip, t/c=15%, and closer to the root,t/c=24%. Interpolation and extrapolation of these two
airfoils made initial guesses for the remaining airfoil thicknesses. Based on these guesses the
airfoils were adjusted both aerodynamically and structurally. The airfoils were developed for
variable speed operation and pitch control of large megawatt sized rotors. Design objectives
were used with simultaneous use of airfoil flow simulations assuming both free and forced
transition. The main design objective was to maximizecl −cd ratio, contributing to the power
efficiency of a wind turbine, over a range of design angles of attack along with numerous
constraints on flow and structural response parameters to ensure a high maximum lift coefficient
and insensitivity of this to leading edge roughness. An important feature of the Risø-C2 airfoils
is the structural stiffness which is maximized and the high degree of compatibility subject to
the high requirement to the aerodynamic characteristics.

The design of the Risø-C2-18 airfoil was verified in the LM Glasfiber wind tunnel and showed
that the design criteria were fulfilled. Thus, the airfoil with clean surface showed the charac-
teristics as predicted with the flow simulation tools, however with a slightly lower maximum
lift. For example the fast movement of the transition point at aroundcl = 1.7 showed to be pre-
dicted well by theen model in XFOIL. Also, an unavoidable but acceptable loss in maximum
lift was seen which was at its highest up toδcl =0.15. Furthermore, it was as expected seen that
the drag was not resistant to leading edge roughness and an increase in both maximum lift and
drag were seen. Testing the airfoils with different turbulence intensity showed an increase in
drag and an increase in maximum lift compared to the tests at lower turbulence intensity.
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7 Comparison of Design Methods for Turbines

in Wake

Author: Torben J. Larsen, Helge Aa. Madsen and Gunner C. Larsen

In this paper two different design methods are compared regarding design loads for a wind tur-
bine operating in park configuration and thereby accountingfor wakes of neighboring turbines.
The first method used for calculating the fatigue and extremeloads is the prescribed method by
IEC61400-1 edition 3, which basically is a method to adjust the intensity of the natural turbu-
lence according to the park configuration and the load component observed. The second method
is completely different since it uses the wind speed deficit of the upstream turbine together with
a meandering process in order to simulate the incoming flowfield of the downstream turbine.
The meandering process causes time periods of full, half or no wake situation - varying in time
- as a result of large scale natural turbulence. This more correct implemented modelling of the
physical process has previously been verified by load, inflowand wake measurements. It has
also previously been seen that there are important differences in the turbine loading depending
of the method chosen [1]. However, a full load base has not previously been compared regard-
ing fatigue and extreme loads as well as power production. The meandering wake method is

The dynamic
wake meandering
(DWM) model
has been im-
plemented in
HAWC2 Re.

implemented in the aeroelastic code HAWC2 [2] and a case study performed. In this study a
pitch controlled 2MW turbine is investigated for site conditions with low ambient turbulence
corresponding to offshore conditions. The load cases considered are purely production cases
for which the fatigue and extreme loads are calculated.

7.1 Introduction

This paper is to be considered as an extension of the paper by Madsen et. al. [3] where the
dynamic wake meandering (DWM) model, its practical implementation and comparisons to
measurements and CFD calculation is described. Where Madsen et al. [3] has focus on the
model description and validation, this paper addresses theload consequences of applying the
DWM model instead of the IEC model. The implementation of theDWM model described
in [3] is identical to the model applied in this paper as is thechosen 2MW turbine. The load
differences between the DWM and the IEC model were previously addressed in the paper by
Thomsen et. al. [1] where a comparison of loads between the DWM and the IEC model was
performed for mean wind speeds of 10 and 20 m/s and large differences were seen especially
regarding the extreme loads for the yaw moment. The differences regarding fatigue loads were
generally in the range of 20%, with less deviation for the blade loads and higher deviation for
tower loads. This analysis assumed only influence of one upstream turbine combined with an
assumption of rotationional symmetry and also only one stochastic turbulence seed was used
for each wind direction.

In the present investigation eight surrounding turbines are included in the model (however
downstream turbines are automatically neglected internally in the code), and simulations are
performed for all mean wind speeds ranging from 8 to 26 m/s. Influence of wind direction
is investigated with a two degrees step, and to take influenceof statistical uncertainty into
account, six different stochastic seeds are used for each parameter setting leading to a total of
2760 simulations used for the DWM analysis. Originally, simulations covering the mean wind
speeds 4 and 6 m/s were also included, but negative wind speedcould suddenly cover the rotor
causing numerical problems in combination with the induction model. These low wind speeds
are therefore excluded in the present analysis and they are in general considered to contribute
only marginally to the total load. More work will be addressing this issue in the future.
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7.2 Wind farm configuration

As illustrated in Figure 78 a park configuration with equal row spacing is assumed. Influence of
the 8 surrounding turbines are taken into consideration. However due to symmetry reasons, only
wind directions from 0 to 44 deg are investigated causing only wake influence from the three
left turbines (down wind placed turbines are ignored automatically as mentioned previously).

A wind farm
layout with two
different tur-
bine spacings,
3D and 8D, is
investigatedRe.

Two spacing configurations are investigated with 3 and 8 diameter distance, respectively.

Figure 78. The wind farm layout is a quadratic grid with distance of 3 and 8D spacing.

7.3 Methods - the IEC model

The method of equivalent turbulence originally formulatedby Frandsen [4] forms the basis of
an informative annex in the recent IEC standard [5]. In the method of equivalent turbulence,
the effects of all load generating mechanisms are condensedinto a modification of the intensity
of the free flow turbulence. The method has primarily been calibrated in order to obtain correct
values for flapwise blade bending fatigue loads. For a uniform wind directional distribution,
the effective turbulence intensity can be calculated as:

Ie f f =
1

Vhub

[
(1−Npw)σm+ pw

N

∑
i=1

σm
T di

] 1
m

(30)

whereVhub is the average wind speed at hub height, N is the number of neighbouring wind
turbines,pw is the probability density function of the wind direction (for a uniform distribu-
tion, pw = 0.06 is used), and m is the relevant material SN-exponent.σ is the ambient wind
speed standard deviation, andσT is the maximum centre-wake wind speed standard deviation
calculated as:

σT =

√√√√
0.3Vhub

1.5+0.3di

√
Vhub

c

+ σ2 (31)

wheredi is the distance to neighbouring turbines normalized by the rotor diameter, andc =

1m/s. More details on the model are given in references [4] and [5]. The used turbulence
intensities can be seen in Figure 79.

7.4 Methods - the DWM model

The Dynamic Wake Meandering (DWM) model complex is based on the combination of three
corner stones: 1) modeling of quasi-steady wake deficits, 2)a stochastic model of the down
wind wake meandering, and 3) added wake turbulence. The wakemeandering part is based
on a fundamental presumption stating that the transport of wakes in the atmospheric bound-
ary layer can be modeled by considering the wakes to act as passive tracers driven by the
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Figure 79. Used turbulence intensities for the DWM and IEC method.

large-scale turbulence structures. Modeling of the meandering process consequently includes
considerations of a suitable description of the “carrier” stochastic transport media as well as of
a suitable definition of the cut-off frequency defining large-scale turbulence structures in this
context. For the stochastic modeling of wake meandering, weconsider a wake as constituted
by a cascade of wake deficits, each “emitted” at consecutive time instants in agreement with
the passive tracer analogy [6], [7]. We then subsequently describe the propagation of each of
the emitted wake deficits, and the collective description ofthese thus constitutes the wake me-
andering model. Adopting Taylor’s hypothesis, the down-stream advection of these is assumed
to be controlled by the mean wind speed of the ambient wind field. With this formulation the
wake momentum in the direction of the mean flow is invariant with respect to displacement.
This is a considerable simplification allowing for a straight forward decoupling of the wake
along the wind deficit profile (and its expansion) and the waketransportation process. As for
the dynamics in the lateral- and vertical directions, each considered wake cascade-element is
displaced according to the large-scale lateral- and vertical turbulence velocities at the position
of the particular wake cascade element at each time instant.The choice of a suitable stochastic
turbulence field, that in turn defines the stochastic wake transport process, is not mandatory,
but may be guided by the characteristics of the atmospheric turbulence at the site of relevance.
These characteristics encompass, in principle, not only turbulence standard parameters such
as turbulence intensity, turbulence length scale and coherence properties, but also features like
degree of isotropy, homogenity of the turbulence, Gaussianity of the turbulence etc.. The me-
andering mechanism in the DWM model has been successfully verified by correlating DWM
predictions with direct full-scale measurements of the instantaneous wake position obtained
from LiDAR recordings [8].

7.5 Results - influence of wind direction

Results showing selected loads as function of wind direction is shown in Figure 80 for the 3D
configuration and in Figure 81 for 8D. In these figures main loads for tower, shaft and blades
are represented.

Starting with the 8D configuration the wake effects are clearly seen causing high variations in
loads depending on the wind direction. At wind directions of17-30◦ (the free direction) the
turbine experiences no or very limited influence from wake effects, where a high contribution
to loads are seen especially for half wake situation in the wind direction interval 5-10◦ and
35-45◦. The variation in fatigue loads for the tower is a factor of 2.5 between the highest and
lowest loaded wind direction, where the same factor is of thesize of 1.5 for yaw, shaft and blade
loads. When the downstream turbine operates in full wake condition the loads are less severe
than in half wake. The same variation in max-min loads are also seen in the statistics shown to
the right in Figure 81, except for the shaft torsion loads where there is less sensitivity regarding
wind direction. The variation in mean level is also shown, where the most visible variation
is associated with the mean level of the driving torque whichalso represents the variation in
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power. A reduction of 30% is seen from free flow to full wake. The mean level variation for the
rest of the sensors are in the range of 10-20%.

Looking at the similar results for the 3D configuration in Figure 80 a completely different
variation pattern of the loads are seen. Specifically, it is the lack of variation that is interesting.
For the flapwise bending moment very little variation is seenfor the fatigue loads, clearly
indicating that the turbinenever experiences any free flow condition. When the wind direction
is 23◦, which normally is the free flow situation, the wake loaded turbine is either in a half wake
situation of the one or the other upstream turbines. This effect is only seen because the wake
source is modeled for several turbines simultaneously using the same meandering turbulence
field, hence the meandering paths of the individual wakes arecorrelated. This (lack of) variation
effect is also seen for the other sensors, but maybe not as pronounced as for the flapwise blade
bending. The variation in fatigue loads, due to the change inwind direction, is in the size
of 30% for the tower loads and 10-20% for the rest of the sensors. Regarding the max-min
statistics also smaller variations are seen than for the 8D case.

When comparing the results between the 3D and 8D configurations,Figure 80 and Figure 81, it
is not surprising that the flapwise blade bending loads are smaller for the 8D case than the 3D.
It is especially the wind directions corresponding to free flow that causes the largest differences
between the two configurations, since the 8D situation has free flow and the 3D does not. The
loads are of the same size for full or half wake operation. What is more interesting is that it
seems to be consistent, that thetower loads in the longitudinal direction are larger for larger
downstream distances. This can be seen when comparing the tower loads for the 8D and3D
case, but also looking only at the 3 or 8D plot there is higher loads for wind direction of 35◦ than
5◦ which is the half wake situation from the most distant turbine. At first hand this might seem
unphysical, since the depth of the velocity deficit is much more smooth for large distances,
but the reason is the meandering process. If two turbines arelocated close to each other, the
down wind turbine will mainly be in permanent full, half or nowake conditions, since the
meandering path has hardly had any time to develop. For larger spacing the meandering path
causes the downwind turbine to be in a mixing state between full, half and no wake conditions
which is especially damaging to the tower. Clearly there must be a distance at which the tower
loads will be reduced, but from this exercise it seems to be beyond 8 diameters.

7.6 Results - comparison of loads

The comparison of loads between the DWM and IEC simulations are shown in Figure 82 and
83 for the 3D and 8D case, respectively. Starting with the 3D situation the loads are comparable
within 30% difference depending on the observed load component. The IEC loads are conser-
vative regarding fatigue and extreme loads for the yaw, driving torque and flapwise bending,
whereas the loads on tower and blade torsion are non-conservative. The extreme tower bending
is 20% higher for the DWM model and 55% higher for the blade torsion moment. For all load

The DWM model
computes higher
tower loads than
the IEC model
Re.

components the fatigue loads of the IEC method are higher forhigh wind speeds, whereas the
DWM model causes large loads at lower wind speeds where wake effects are most dominating.

Regarding the 8D case the comparison shows a generally good agreement between the two
models with respect to yaw, driving torque and flapwise bladebending with deviances in the
size of 10%. However, for the tower loads and blade torsion a significantly higher load level
is seen with the DWM model. Regarding tower loads the fatiguelevel is 25% higher with the
DWM model and the maximum bending moment is 60% higher than for the IEC model. A
similar difference is also seen for the blade torsion.

7.7 Conclusion

A new implementation of the Dynamic wake meandering model has been demonstrated, where
all wake sources from the neighboring turbines are included. Production cases have only been
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considered and ambient turbulence corresponding to a terrain class IC (high wind, low turbu-
lence) has been applied. A comparison of loads between turbines with a row distance of 3 and
8 diameters respectively has been investigated with the DWMmodel and the method accord-
ing to the IEC 61400-1 ed 3. standard. The simulations performed for very low wind speeds
(<8m/s) were however excluded in the analysis due to problems with the induction model in
HAWC2 when negative wind speed occurred on the downstream rotor, which is considered to
be of minor importance to the results.

When comparing the loads between the 3D and 8D configuration,the turbine at the 3D con-
figuration never experiences any free flow situation. Another interesting observation is that the
tower loads seem more affected at longer downstream positions than when turbines are close to
each other. This effect is addressed to the meandering effect causing higher states of full, half
and no wake situation when the meandering has had time to develop.

In the direct comparison between the DWM and the IEC model forthe 3D case, the IEC model
seems conservative regarding fatigue and extreme loads forthe yaw, driving torque and flapwise
bending, whereas the loads on tower and blade torsion are non-conservative. The maximum
tower bending is 20% higher for the DWM model and 55% higher for the blade torsion moment.

For the 8D case, the comparison shows a generally good agreement between the two models
regarding yaw, driving torque and flapwise blade bending with deviances in the size of 10%.
However, for the tower loads and blade torsion a significantly higher load level is seen with the
DWM model. Regarding tower loads the fatigue level is 25% higher with the DWM model and
the maximum bending moment is 60% higher than for the IEC model. A similar difference is
also seen for the blade torsion.
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Figure 80. Influence of wind direction with spacing D=3.
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Figure 81. Influence of wind direction with spacing D=8.

Risø–R–1649(EN) 89



3000

4000

5000

6000

7000

8000

9000

10000

11000

8 10 12 14 16 18 20 22 24 26 28

1 
H

z.
 E

qu
iv

al
en

t F
at

ig
ue

 L
oa

d

Wind speed [m/s]

D=3. Tower bottom tilt

 m=4, DWM
 m=4, IEC

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

30000

8 10 12 14 16 18 20 22 24 26 28

T
ow

 b
ot

 ti
lt 

[k
N

m
]

Wind speed [m/s]

D=3. Tower bottom tilt. Max-mean-min statistics

 DWM
 IEC

0

0.5

1

1.5

2

Fatigue m=4 Max load

T
ow

 b
ot

 ti
lt 

[k
N

m
]

 

Comparison 20 years. D=3

 DWM
 IEC

1000

2000

3000

4000

5000

6000

7000

8000

9000

8 10 12 14 16 18 20 22 24 26 28

1 
H

z.
 E

qu
iv

al
en

t F
at

ig
ue

 L
oa

d

Wind speed [m/s]

D=3. Tower bottom lateral

 m=4, DWM
 m=4, IEC

-10000

-5000

0

5000

10000

15000

8 10 12 14 16 18 20 22 24 26 28

T
ow

 b
ot

 la
t [

kN
m

]

Wind speed [m/s]

D=3. Tower bottom lateral. Max-mean-min statistics

 DWM
 IEC

0

0.5

1

1.5

2

Fatigue m=4 Max load

T
ow

 b
ot

 la
t [

kN
m

]

 

Comparison 20 years. D=3

 DWM
 IEC

500

1000

1500

2000

2500

3000

3500

8 10 12 14 16 18 20 22 24 26 28

1 
H

z.
 E

qu
iv

al
en

t F
at

ig
ue

 L
oa

d

Wind speed [m/s]

D=3. Tower top yaw

 m=4, DWM
 m=4, IEC

-5000
-4000
-3000
-2000
-1000

0
1000
2000
3000
4000
5000

8 10 12 14 16 18 20 22 24 26 28

T
ow

 to
p 

ya
w

 [k
N

m
]

Wind speed [m/s]

D=3. Tower top yaw. Max-mean-min statistics

 DWM
 IEC

0

0.5

1

1.5

2

Fatigue m=4 Max load

T
ow

 to
p 

ya
w

 [k
N

m
]

 

Comparison 20 years. D=3

 DWM
 IEC

0

200

400

600

800

1000

1200

1400

1600

8 10 12 14 16 18 20 22 24 26 28

1 
H

z.
 E

qu
iv

al
en

t F
at

ig
ue

 L
oa

d

Wind speed [m/s]

D=3. Shaft driving torque

 m=4, DWM
 m=4, IEC

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

8 10 12 14 16 18 20 22 24 26 28

S
ha

ft 
to

rq
ue

 [k
N

m
]

Wind speed [m/s]

D=3. Shaft driving torque. Max-mean-min statistics

 DWM
 IEC

0

0.5

1

1.5

2

Fatigue m=4 Max load

S
ha

ft 
to

rq
ue

 [k
N

m
]

 

Comparison 20 years. D=3

 DWM
 IEC

1000

1500

2000

2500

3000

3500

4000

4500

8 10 12 14 16 18 20 22 24 26 28

1 
H

z.
 E

qu
iv

al
en

t F
at

ig
ue

 L
oa

d

Wind speed [m/s]

D=3. Flapwise bending blade1 root

 m=12, DWM
 m=12, IEC

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

8 10 12 14 16 18 20 22 24 26 28

M
fla

p 
ro

ot
 [k

N
m

]

Wind speed [m/s]

D=3. Flapwise bending blade1 root. Max-mean-min statistics

 DWM
 IEC

0

0.5

1

1.5

2

Fatigue m=12 Max load

M
fla

p 
ro

ot
 [k

N
m

]

 

Comparison 20 years. D=3

 DWM
 IEC

10

20

30

40

50

60

70

80

8 10 12 14 16 18 20 22 24 26 28

1 
H

z.
 E

qu
iv

al
en

t F
at

ig
ue

 L
oa

d

Wind speed [m/s]

D=3. Torsion blade1 root

 m=12, DWM
 m=12, IEC

-60

-40

-20

0

20

40

60

80

100

120

8 10 12 14 16 18 20 22 24 26 28

M
pi

tc
h 

ro
ot

 [k
N

m
]

Wind speed [m/s]

D=3. Torsion blade1 root. Max-mean-min statistics

 DWM
 IEC

0

0.5

1

1.5

2

Fatigue m=12 Max load

M
pi

tc
h 

ro
ot

 [k
N

m
]

 

Comparison 20 years. D=3

 DWM
 IEC

Figure 82. Fatigue and statistics for D=3.
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Figure 83. Fatigue and statistics for D=8.
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8 Some Nonlinear Effects on the Flutter Speed

and Blade Stability

Author: Morten H. Hansen and Bjarne S. Kallesøe

This chapter deals with two different nonlinear effects on the stability of a blade. This work has
been performed under the milestone “Aero-servo-elastisk pitch dynamik for vinger med store
udbøjninger” of the EFP-2007 project.

First, the effects of large bending deflections under steadystate operation of the wind turbine
blade on its stability limits, especially with regards to the flutter limit, are analyzed.

Politis and Riziotis [1] have shown the importance of nonlinear effects identified by aerody-
namic and aero-elastic simulations on the 5 MW Reference Wind Turbine (RWT) [2]. Their
results show that the curvature of a blade with large flapwisebending under the aerodynamic
loading leads to a coupling of blade torsion to the edgewise bending. The blade torsion, and
therefore the angle of attack along the blade, are increasednear the rated speed by this cou-
pling, which again causes the a higher thrust and mean flapwise deflections. Their aeroelastic
simulations also show that the fatigue loads for blade root flapwise and edgewise moments are
almost unaffected, whereas the extreme values of the torsion moment are increased.

The coupling of bending and torsion due to large blade bending are also assumed to have
some effects of the flutter limits of wind turbines, as discussed in [3]. In the present report,
the aeroelastic blade model suggested by Kallesøe [4], which is similar to the second order
model used in [1], is used to investigate the aeroelastic stability limits of the RWT blade with
and without the effects of the large blade deflection. The investigation shows no significant
change of the flutter limit on the rotor speed due to the blade deflection, whereas the first
edgewise bending mode becomes negatively damped due to the coupling with torsion. These
observations are confirmed by nonlinear aeroelastic simulations using HAWC2 [5, 6].

To evaluate the validity of this analysis, the bending–torsion coupling due to pre-bending is
investigated for a simple prebent test blade in the following subsections by computing the
structural mode shapes using three different structural models.

Second, the effect of a free-play in the pitch system is analyzed. A linear pitch bearing stiffness
with a free-play are imposed on a 2D wing-section model with flapwise, edgewise and torsional
degrees of freedom, including both dynamic and steady stateeffects of pitch changes, suggested
by Kallesøe [7]. The pitch system model and the wing-sectionmodel are combined into an
autonomous system, which is subject to time simulations fordetermine steady state conditions.
It is found that the flutter speed decrease when a free-play isintroduced.

8.1 Effect of bending–torsion coupling due to pre-bending

The edgewise bending–torsion coupling effects of flapwise prebent on selected blade modes
are investigated in this section using three different models. First, the second order Bernoulli-
Euler (BE) beam theory model by Kallesøe [4] used in the subsequent flutter analysis. Second,
the preliminary co-rotational finite beam element model [8]implemented in HAWCStab2 (new
version of the stability tool HAWCStab [9]). Third, a solid 3D finite element model set up in
the commercial tool COMSOL. Effects of the flapwise pre-bending are observed as edgewise
bending–torsion coupling in the edgewise and torsional mode shapes. Qualitative agreements

Effects of the
flapwise pre-
bending are
observed as edge-
wise bending–
torsion coupling
in the edgewise
and torsional
mode shapes.

are seen for these effects predicted by the three different models, except that the edgewise
bending component in the torsional mode is significantly smaller in the predictions by the
second order BE model compared to the other two models.
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Figure 84. COMSOL model with 9,236 tetrahedral elements and45,456 degrees of freedom
which are sufficient for convergence of natural frequenciesand mode shapes of the lower order
modes. The 10 m test blade has squared prebent shape with 2 m tip deflection.

8.1.1 Simple test blade

A 10 m long, prismatic, and isotropic beam is used as a test blade. The cross-section has a
aspect-ratio of 2, and the height of 0.245 m is selected such that the straight beam has a natural
frequency of the first flapwise bending mode of 1 Hz withE =50 GN/m2 and Poisson’s ratio
of 0.33 (note that the first edgewise bending mode has a natural frequency of 2 Hz). The beam
has squared prebent shape with 2 m tip deflection (keeping a curve length of 10 m) as shown
in Figure 84, which shows the grid of the solid 3D finite element model set up in COMSOL.

Comparison of mode shapes The first ten mode shapes of the prebent test blade have been
computed by all three models; however, only the first three edgewise bending modes (numbers
2, 4, and 6) and the first torsional mode (number 8) are considered here, because the remaining
flapwise bending modes are trivial by having no edgewise bending or torsional components
in their mode shapes. The purely flapwise pre-bending of the test blade furthermore limits the
comparisons of edgewise bending and torsional components,because all models agree that no
flapwise bending arises due to edgewise bending or torsion ofsuch prebent blade.

Figure 85 shows the normalized edgewise bending and torsional components in the first edge-
wise bending mode. The three models agree on the edgewise component, whereas the second
order BE model predicts a lower torsional component than theother two models. All models
agree on the qualitative behavior that theforward edgewise motion of adownwindbend blade
is coupled to torsion towardslower angles of attack.

Figure 86 shows the normalized edgewise bending and torsional components in the second
edgewise bending mode. Again, there is a qualitative agreement between the three models;
note that the torsional component is most larger for the second edgewise bending mode. The
co-rotational model (HAWCStab2) predicts a larger torsional component than the other two
models, and the smallest torsional component is again for the second order BE model.
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Figure 85. Edgewise bending (top) and torsional (bottom) components in the second blade
mode of flapwise prebent 10 m blade computed by COMSOL model (2.02 Hz), HAWCStab2
(1.96 Hz), and second order BE model (2.02 Hz).
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Figure 86. Edgewise bending (top) and torsional (bottom) components in the fourth blade
mode of flapwise prebent 10 m blade computed by COMSOL model (11.72 Hz), HAWCStab2
(11.67 Hz), and second order BE model (12.45 Hz).

Figure 87 shows the computed normalized edgewise bending and torsional components in the
first torsional mode. Here, the qualitative agreement is restricted to the HAWCStab2 and COM-
SOL predictions. There are almost no edgewise bending component in the torsional mode com-
puted with the second order BE model. This surprising discrepancy to the other two models is
still under investigation.

Figure 88 shows the computed normalized edgewise bending and torsional components in the
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third edgewise bending mode. Here, the qualitative (and even quantitative) agreement between
the three models is restored, which eliminates higher ordereffects as explanation for the dis-
crepancy for the torsional mode.
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Figure 87. Edgewise bending (top) and torsional (bottom) components in the sixth blade
mode of flapwise prebent 10 m blade computed by COMSOL model (29.95 Hz), HAWCStab2
(29.67 Hz), and second order BE model (31.25 Hz).
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Figure 88. Edgewise bending (top) and torsional (bottom) components in the eighth blade
mode of flapwise prebent 10 m blade computed by COMSOL model (35.99 Hz), HAWCStab2
(36.15 Hz), and second order BE model (34.87 Hz).
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8.1.2 Stability of the RWT blade

The effect of blade deflection on the aeroelastic stability is analyzed by comparing the aeroe-
lastic modes of blade motion with and without the blade deflection due to the mean steady state
aerodynamic forces. These aeroelastic modes are computed for zero pitch angle and a series of
rotor speeds and corresponding wind speeds are analyzed (see Table 8.1.2). The wind speed at
the different rotor speeds are chosen such that the angles ofattack stay low and almost constant.

A nonlinear steady state version (no dynamic terms) of the second order Bernoulli-Euler model
coupled with a Blade Element Momentum model is used to compute steady state blade defor-
mations under the assumption of constant inflow (no shear or tower effects) and no gravity.
The full dynamic nonlinear model is then linearized about this steady state deformation to
form a differential eigenvalue problem, which gives the aeroelastic frequencies, damping and
mode shapes for the deformed blade (see all details in [4]). Similar, the full dynamic nonlinear

The nonlinear
model is lin-
earized about
the steady state
deformed blade,
which leads to
the aeroelastic
frequencies,
damping and
mode shapes for
the deformed
blade.

model is linearized about the initial blade, which leads to the aeroelastic frequencies, damping
and mode shapes for the undeformed blade.

To check the results of the eigenvalue analysis, the same series of rotor speeds and wind speeds
are also simulated with HAWC2 [5, 6] for zero pitch angle. Thedamping of the least damped
mode is then estimated by the exponential decay/growth of the initial blade oscillation.

Results Figure 89 shows the tip deflection for the different operation conditions given in
Table 8.1.2. The flapwise deflection become relative large for a blade length of 63 m as the
rotor speed increase.

Figure 90 shows the aeroelastic frequency for the first five blade modes under the different
operation conditions (Table 8.1.2) for the undeformed and deformed blade, and the dominant
frequency of the transient response in the nonlinear aeroelastic simulation with HAWC2. Fig-
ure 91 shows the corresponding aeroelastic damping, exceptfor the first and second flapwise
bending modes which are highly damped and therefore not shown.

The third flapwise bending mode (the fourth mode) becomes a flutter mode around 2.35 rad/s
for both the deformed and undeformed blade. This result indicates that the large blade deflec-
tion has no significant effect on the flutter limit.

Rotor speed [rad/s] Wind speed [m/s]
1.0 3.8674
1.1 4.2541
1.2 4.6409
1.3 5.0276
1.4 5.4144
1.5 5.8011
1.6 6.1878
1.7 6.5746
1.8 6.9613
1.9 7.3481
2.0 7.7348
2.1 8.1215
2.2 8.5083
2.3 8.8950
2.4 9.2818
2.5 9.6685

Table 4. Rotor speed and corresponding wind speeds used in the flutter analysis.
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The second edgewise bending mode (the fifth mode) is significantly lower damped for the
deformed blade than for the undeformed blade, which can onlybe explained by the increased
torsional component in this edgewise bending mode due to thecurvature of the flapwise blade
deflection.

The second
edgewise bend-
ing mode is
significantly
lower damped
for the deformed
blade than for
the undeformed
blade.

The first edgewise bending mode (the second mode) becomes negatively damped for rotor
speeds above 1.5 rad/s when including deformations, while it stays positive damped for the
undeformed blade. The HAWC2 simulations showing the dominant response (lowest damped
mode) in its transients agree well with the results from the deformed blade. Notice the abrupt
decrease of the damping of these transient at the rotor speedof 2.3 rad/s where the second
order BE model predicts the flutter to occurs, which indicates that the HAWC2 simulations
also confirms this flutter limit.

To understand the negative aeroelastic damping of the first edgewise bending mode for the
deformed blade, the amplitudes and phases for the edgewise,flapwise and torsional components
of this mode are plotted in Figure 92 and 93 for the undeformedand deformed blade. The phases
between edgewise and flapwise blade motion are seen to shift sign for the rotor speed where
the damping of the mode becomes negative. The change of sign on the phase between edgewise
and flapwise blade motion corresponds to a change of the direction of vibration as shown in
Figure 94. The coupling of the edgewise bending with blade torsion creates an aerodynamic
coupling to between edgewise and flapwise bending through the lift–torsion coupling. The
direction of vibration is related to the aerodynamic damping, and it is assumed that the negative
aeroelastic damping of the first edgewise bending mode for the deformed blade is caused by
this phase change.

1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1 1.5 2 2.5
0

5

10

15

1 1.5 2 2.5
0

2

4

6

8

E
d

g
ew

is
e

tip
d

efl
.[

m
]

F
la

p
w

is
e

tip
d

efl
.[

m
]

To
rs

io
n

at
tip

[d
eg

]

Rotor speed [rad/s]

Figure 89. Tip bending deflection and torsion under steady state conditions versus rotor speed.
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8.2 Effect of Free-play in the Pitch System

The effect of a free-play in the pitch system is analyzed by the use of the 2D wing-section model
suggested in [7], which includes the edgewise and flapwise bending, and torsional degrees of
freedom for the section, and the pitch degree of freedom of the pitch system. Figure 95 shows
the wing-section model with location of center of gravity and elastic axis about which the
section is assumed to rotated in torsion. The stationary anddynamic effects of pitch angle
variations are included in both the structural and aerodynamic models.

The structural equations of motion is given by

ẍ = fstruc(x, ẋ,β, β̇, β̈,Vt ,Vn|Pstruc) (32)

whereβ is the pitch angle, and the vectorx = [x,y,θ]T contains the edgewise (x), flapwise (y),
and torsional (θ) deflection of the wing-section, respectively. Model parameters, such as section
mass, location of center of gravity, etc., are given byPstruc.

The unsteady aerodynamic is described by a dynamic stall model [10] formulated as

ż = faero(z,x, ẋ, , ẍ,β, β̇, β̈,Vt ,Vn|Paero) (33)

wherez= [z1,z2,z3,z4]
T are the aerodynamic states, two describing the effect of shed vorticity

(the Theodorsen effect) and two describing the effect of thetrailing edge separation. Aerody-
namic parameters, such as lift data, time constants etc., are given byPaero

The effect of the aerodynamic forces and structural motion on the pitch system is described by

β̈ = fpitch(β̇,β,x, ẋ, ẍ|Ppitch)+Mβ (34)

where fpitch describes the effect from the wing section on the pitch system, Mβ is the actuator
moment from the pitch system, andPpitch holds parameters describing the transfer function
from wing-section motion to pitch moment, such as stiffnessand damping.

The pitch system is assumed to give a linear restoring force with a free-play at zero restoring
force. Figure 96 shows the pitch momentMβ in a case of 0.2 deg free-play.

The pitch system
is assumed to
give a linear
restoring force
with a free-play
at zero restoring
force

Combination of (32), (33) and (34) into one set of equations,and assumption of constant wind
speeds[Vn,Vt ], the system is autonomous and can be written as

ẏ = f(y|Vt ,P) (35)

wherey = [x,y,θ,β,z1,z2,z3,z4, ẋ, ẏ, θ̇, β̇]T holds the states andP holds all model parameters
except for the relative inflow speedVt .

Results For different relative inflow speedsVt , the autonomous system (35) is simulated until
it reach as a steady state where the amplitude of the oscillations either become zero or settles
with a finite amplitude. The flutter speed is assumed to be the relative inflow speed when the
steady state amplitudes are distinguishably larger than the zero amplitudes of the normal steady
state solution.

Figure 97 shows at which wind speeds the amplitude of oscillations of the wing section begins
to increase rapidly, indicating the flutter limit. It is seenthat the introduction of a free-play
decrease the flutter speed.

The introduction
of a free-play de-
crease the flutter
speed.

8.3 Conclusion

This chapter deals with nonlinear effects on the stability of a wind turbine blade. This work has
been performed under the milestone “Aero-servo-elastisk pitch dynamik for vinger med store
udbøjninger” of the EFP-2007 project.

First, the effects of large bending deflections under steadystate operation of the wind turbine
blade on its stability limits, especially with regards to the flutter limit, are analyzed. The cou-
pling of bending and torsion due to large blade bending are assumed to have some effects of the
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flutter limits of wind turbines [3]. In the present work, the aeroelastic blade model suggested
by Kallesøe [4] is used to investigate the aeroelastic stability limits of the RWT blade with
and without the effects of the large blade deflection. The investigation shows no significant
change of the flutter limit on the rotor speed due to the blade deflection, whereas the first edge-
wise bending mode becomes negatively damped due to the coupling with blade torsion which
causes a change of the effective direction of blade vibration. These observations are confirmed
by nonlinear aeroelastic simulations using HAWC2 [5, 6].

Second, the effect of a free-play in the pitch system is analyzed. A linear pitch bearing stiffness
with a free-play are imposed on a 2D wing-section model, suggested by Kallesøe [7]. The pitch
system model and the wing-section model are combined and simulated in time to determine
the relative inflow speed where flutter onsets. It is found that this flutter speed decrease when a
free-play is introduced.
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