9 research outputs found

    On the relative proof complexity of deep inference via atomic flows

    Get PDF
    We consider the proof complexity of the minimal complete fragment, KS, of standard deep inference systems for propositional logic. To examine the size of proofs we employ atomic flows, diagrams that trace structural changes through a proof but ignore logical information. As results we obtain a polynomial simulation of versions of Resolution, along with some extensions. We also show that these systems, as well as bounded-depth Frege systems, cannot polynomially simulate KS, by giving polynomial-size proofs of certain variants of the propositional pigeonhole principle in KS.Comment: 27 pages, 2 figures, full version of conference pape

    On the relative proof complexity of deep inference via atomic flows

    Full text link

    From Syntactic Proofs to Combinatorial Proofs

    Get PDF
    International audienceIn this paper we investigate Hughes’ combinatorial proofs as a notion of proof identity for classical logic. We show for various syntactic formalisms including sequent calculus, analytic tableaux, and resolution, how they can be translated into combinatorial proofs, and which notion of identity they enforce. This allows the comparison of proofs that are given in different formalisms

    On linear rewriting systems for Boolean logic and some applications to proof theory

    Get PDF
    Linear rules have played an increasing role in structural proof theory in recent years. It has been observed that the set of all sound linear inference rules in Boolean logic is already coNP-complete, i.e. that every Boolean tautology can be written as a (left- and right-)linear rewrite rule. In this paper we study properties of systems consisting only of linear inferences. Our main result is that the length of any 'nontrivial' derivation in such a system is bound by a polynomial. As a consequence there is no polynomial-time decidable sound and complete system of linear inferences, unless coNP=NP. We draw tools and concepts from term rewriting, Boolean function theory and graph theory in order to access some required intermediate results. At the same time we make several connections between these areas that, to our knowledge, have not yet been presented and constitute a rich theoretical framework for reasoning about linear TRSs for Boolean logic.Comment: 27 pages, 3 figures, special issue of RTA 201

    Enumerating Independent Linear Inferences

    Get PDF
    A linear inference is a valid inequality of Boolean algebra in which each variable occurs at most once on each side. Equivalently, it is a linear rewrite rule on Boolean terms that constitutes a valid implication. Linear inferences have played a significant role in structural proof theory, in particular in models of substructural logics and in normalisation arguments for deep inference proof systems. In this work we leverage recently developed graphical representations of linear formulae to build an implementation that is capable of more efficiently searching for switch-medial-independent inferences. We use it to find four `minimal' 8-variable independent inferences and also prove that no smaller ones exist; in contrast, a previous approach based directly on formulae reached computational limits already at 7 variables. Two of these new inferences derive some previously found independent linear inferences. The other two (which are dual) exhibit structure seemingly beyond the scope of previous approaches we are aware of; in particular, their existence contradicts a conjecture of Das and Strassburger. We were also able to identify 10 minimal 9-variable linear inferences independent of all the aforementioned inferences, comprising 5 dual pairs, and present applications of our implementation to recent `graph logics'.Comment: 33 pages, 3 figure

    Enumerating Independent Linear Inferences

    Get PDF
    A linear inference is a valid inequality of Boolean algebra in which each variable occurs at most once on each side. In this work we leverage recently developed graphical representations of linear formulae to build an implementation that is capable of more efficiently searching for switch-medial-independent inferences. We use it to find four `minimal' 8-variable independent inferences and also prove that no smaller ones exist; in contrast, a previous approach based directly on formulae reached computational limits already at 7 variables. Two of these new inferences derive some previously found independent linear inferences. The other two (which are dual) exhibit structure seemingly beyond the scope of previous approaches we are aware of; in particular, their existence contradicts a conjecture of Das and Strassburger. We were also able to identify 10 minimal 9-variable linear inferences independent of all the aforementioned inferences, comprising 5 dual pairs, and present applications of our implementation to recent `graph logics'

    On the relative proof complexity of deep inference via atomic flows

    No full text
    We consider the proof complexity of the minimal complete fragment, KS, of standard deep inference systems for propositional logic. To examine the size of proofs we employ atomic flows, diagrams that trace structural changes through a proof but ignore logical information. As results we obtain a polynomial simulation of versions of Resolution, along with some extensions. We also show that these systems, as well as bounded-depth Frege systems, cannot polynomially simulate KS, by giving polynomial-size proofs of certain variants of the propositional pigeonhole principle in KS
    corecore