376 research outputs found

    Development of the adjoint of GEOS-Chem

    Get PDF
    We present the adjoint of the global chemical transport model GEOS-Chem, focusing on the chemical and thermodynamic relationships between sulfate – ammonium – nitrate aerosols and their gas-phase precursors. The adjoint model is constructed from a combination of manually and automatically derived discrete adjoint algorithms and numerical solutions to continuous adjoint equations. Explicit inclusion of the processes that govern secondary formation of inorganic aerosol is shown to afford efficient calculation of model sensitivities such as the dependence of sulfate and nitrate aerosol concentrations on emissions of SOx, NOx, and NH3. The adjoint model is extensively validated by comparing adjoint to finite difference sensitivities, which are shown to agree within acceptable tolerances; most sets of comparisons have a nearly 1:1 correlation and R2>0.9. We explore the robustness of these results, noting how insufficient observations or nonlinearities in the advection routine can degrade the adjoint model performance. The potential for inverse modeling using the adjoint of GEOS-Chem is assessed in a data assimilation framework through a series of tests using simulated observations, demonstrating the feasibility of exploiting gas- and aerosol-phase measurements for optimizing emission inventories of aerosol precursors

    Discretely exact derivatives for hyperbolic PDE-constrained optimization problems discretized by the discontinuous Galerkin method

    Get PDF
    This paper discusses the computation of derivatives for optimization problems governed by linear hyperbolic systems of partial differential equations (PDEs) that are discretized by the discontinuous Galerkin (dG) method. An efficient and accurate computation of these derivatives is important, for instance, in inverse problems and optimal control problems. This computation is usually based on an adjoint PDE system, and the question addressed in this paper is how the discretization of this adjoint system should relate to the dG discretization of the hyperbolic state equation. Adjoint-based derivatives can either be computed before or after discretization; these two options are often referred to as the optimize-then-discretize and discretize-then-optimize approaches. We discuss the relation between these two options for dG discretizations in space and Runge-Kutta time integration. Discretely exact discretizations for several hyperbolic optimization problems are derived, including the advection equation, Maxwell's equations and the coupled elastic-acoustic wave equation. We find that the discrete adjoint equation inherits a natural dG discretization from the discretization of the state equation and that the expressions for the discretely exact gradient often have to take into account contributions from element faces. For the coupled elastic-acoustic wave equation, the correctness and accuracy of our derivative expressions are illustrated by comparisons with finite difference gradients. The results show that a straightforward discretization of the continuous gradient differs from the discretely exact gradient, and thus is not consistent with the discretized objective. This inconsistency may cause difficulties in the convergence of gradient based algorithms for solving optimization problems

    Space-time adaptive solution of inverse problems with the discrete adjoint method

    Get PDF
    Adaptivity in both space and time has become the norm for solving problems modeled by partial differential equations. The size of the discretized problem makes uniformly refined grids computationally prohibitive. Adaptive refinement of meshes and time steps allows to capture the phenomena of interest while keeping the cost of a simulation tractable on the current hardware. Many fields in science and engineering require the solution of inverse problems where parameters for a given model are estimated based on available measurement information. In contrast to forward (regular) simulations, inverse problems have not extensively benefited from the adaptive solver technology. Previous research in inverse problems has focused mainly on the continuous approach to calculate sensitivities, and has typically employed fixed time and space meshes in the solution process. Inverse problem solvers that make exclusive use of uniform or static meshes avoid complications such as the differentiation of mesh motion equations, or inconsistencies in the sensitivity equations between subdomains with different refinement levels. However, this comes at the cost of low computational efficiency. More efficient computations are possible through judicious use of adaptive mesh refinement, adaptive time steps, and the discrete adjoint method. This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the intergrid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided for the discontinuous Galerkin (DG) method. The adjoint model development is considerably simplified by decoupling the adaptive mesh refinement mechanism from the forward model solver, and by selectively applying automatic differentiation on individual algorithms. In forward models discontinuous Galerkin discretizations can efficiently handle high orders of accuracy, h/ph/p-refinement, and parallel computation. The analysis reveals that this approach, paired with Runge Kutta time stepping, is well suited for the adaptive solutions of inverse problems. The usefulness of discrete discontinuous Galerkin adjoints is illustrated on a two-dimensional adaptive data assimilation problem

    Discrete Second Order Adjoints in Atmospheric Chemical Transport Modeling

    Get PDF
    Atmospheric chemical transport models (CTMs) are essential tools for the study of air pollution, for environmental policy decisions, for the interpretation of observational data, and for producing air quality forecasts. Many air quality studies require sensitivity analyses, i.e., the computation of derivatives of the model output with respect to model parameters. The derivatives of a cost functional (defined on the model output) with respect to a large number of model parameters can be calculated efficiently through adjoint sensitivity analysis. While the traditional (first order) adjoint models give the gradient of the cost functional with respect to parameters, second order adjoint models give second derivative information in the form of products between the Hessian of the cost functional and a user defined vector. In this paper we discuss the mathematical foundations of the discrete second order adjoint sensitivity method and present a complete set of computational tools for performing second order sensitivity studies in three-dimensional atmospheric CTMs. The tools include discrete second order adjoints of Runge Kutta and of Rosenbrock time stepping methods for stiff equations together with efficient implementation strategies. Numerical examples illustrate the use of these computational tools in important applications like sensitivity analysis, optimization, uncertainty quantification, and the calculation of directions of maximal error growth in three-dimensional atmospheric CTMs

    Preconditioning and fast solvers for incompressible flow

    Get PDF
    We give a brief description with references of work on fast solution methods for incompressible Navier-Stokes problems which has been going on for about a decade. Specifically we describe preconditioned iterative strategies which involve the use of simple multigrid cycles for subproblems

    Development of the adjoint of GEOS-Chem

    Get PDF
    International audienceWe present the adjoint of the global chemical transport model GEOS-Chem, focusing on the chemical and thermodynamic relationships between sulfate ? ammonium ? nitrate aerosols and their gas-phase precursors. The adjoint model is constructed from a combination of manually and automatically derived discrete adjoint algorithms and numerical solutions to continuous adjoint equations. Explicit inclusion of the processes that govern secondary formation of inorganic aerosol is shown to afford efficient calculation of model sensitivities such as the dependence of sulfate and nitrate aerosol concentrations on emissions of SOx, NOx, and NH3. The accuracy of the adjoint model is extensively verified by comparing adjoint to finite difference sensitivities, which are shown to agree within acceptable tolerances. We explore the robustness of these results, noting how discontinuities in the advection routine hinder, but do not entirely preclude, the use of such comparisons for validation of the adjoint model. The potential for inverse modeling using the adjoint of GEOS-Chem is assessed in a data assimilation framework using simulated observations, demonstrating the feasibility of exploiting gas- and aerosol-phase measurements for optimizing emission inventories of aerosol precursors
    corecore