13,368 research outputs found

    Polytopality and Cartesian products of graphs

    Full text link
    We study the question of polytopality of graphs: when is a given graph the graph of a polytope? We first review the known necessary conditions for a graph to be polytopal, and we provide several families of graphs which satisfy all these conditions, but which nonetheless are not graphs of polytopes. Our main contribution concerns the polytopality of Cartesian products of non-polytopal graphs. On the one hand, we show that products of simple polytopes are the only simple polytopes whose graph is a product. On the other hand, we provide a general method to construct (non-simple) polytopal products whose factors are not polytopal.Comment: 21 pages, 10 figure

    HH-product and HH-threshold graphs

    Full text link
    This paper is the continuation of the research of the author and his colleagues of the {\it canonical} decomposition of graphs. The idea of the canonical decomposition is to define the binary operation on the set of graphs and to represent the graph under study as a product of prime elements with respect to this operation. We consider the graph together with the arbitrary partition of its vertex set into nn subsets (nn-partitioned graph). On the set of nn-partitioned graphs distinguished up to isomorphism we consider the binary algebraic operation ∘H\circ_H (HH-product of graphs), determined by the digraph HH. It is proved, that every operation ∘H\circ_H defines the unique factorization as a product of prime factors. We define HH-threshold graphs as graphs, which could be represented as the product ∘H\circ_{H} of one-vertex factors, and the threshold-width of the graph GG as the minimum size of HH such, that GG is HH-threshold. HH-threshold graphs generalize the classes of threshold graphs and difference graphs and extend their properties. We show, that the threshold-width is defined for all graphs, and give the characterization of graphs with fixed threshold-width. We study in detail the graphs with threshold-widths 1 and 2

    Module Extensions Over Classical Lie Superalgebras

    Full text link
    We study certain filtrations of indecomposable injective modules over classical Lie superalgebras, applying a general approach for noetherian rings developed by Brown, Jategaonkar, Lenagan, and Warfield. To indicate the consequences of our analysis, suppose that gg is a complex classical simple Lie superalgebra and that EE is an indecomposable injective gg-module with nonzero (and so necessarily simple) socle LL. (Recall that every essential extension of LL, and in particular every nonsplit extension of LL by a simple module, can be formed from gg-subfactors of EE.) A direct transposition of the Lie algebra theory to this setting is impossible. However, we are able to present a finite upper bound, easily calculated and dependent only on gg, for the number of isomorphism classes of simple highest weight gg-modules appearing as gg-subfactors of EE.Comment: 20 page
    • …
    corecore