157,143 research outputs found

    DMT Optimal On-Demand Relaying for Mesh Networks

    Get PDF
    This paper presents a new cooperative MAC (Medium Access Control) protocol called BRIAF (Best Relay based Incremental Amplify-and-Forward). The proposed protocol presents two features: on-demand relaying and selection of the best relay terminal. “On-demand relaying” means that a cooperative transmission is implemented between a source terminal and a destination terminal only when the destination terminal fails in decoding the data transmitted by the source terminal. This feature maximizes the spatial multiplexing gain r of the transmission. “Selection of the best relay terminal” means that a selection of the best relay among a set of (m-1) relay candidates is implemented when a cooperative transmission is needed. This feature maximizes the diversity order d(r) of the transmission. Hence, an optimal DMT (Diversity Multiplexing Tradeoff) curve is achieved with a diversity order d(r) = m(1-r) for 0 ≀ r ≀ 1

    Splitting algorithm for DMT optimal cooperative MAC protocols in wireless mesh networks

    Get PDF
    A cooperative protocol for wireless mesh networks is proposed in this paper. The protocol implements both on-demand relaying and a selection of the best relay terminal so only one terminal is relaying the source message when cooperation is needed. Two additional features are also proposed. The best relay is selected with a splitting algorithm. This approach allows fast relay selection within less than three time-slots, on average. Moreover, a pre-selection of relay candidates is performed prior to the splitting algorithm. Only terminals that are able to improve the direct path are pre-selected. So efficient cooperation is now guaranteed. We prove that this approach is optimal in terms of diversity-multiplexing trade-off. The protocol has been designed in the context of Nakagami-mfading channels. Simulation results show that the performance of the splitting algorithm does not depend on channel statistics

    Optimal Relay Selection for Physical-Layer Security in Cooperative Wireless Networks

    Full text link
    In this paper, we explore the physical-layer security in cooperative wireless networks with multiple relays where both amplify-and-forward (AF) and decode-and-forward (DF) protocols are considered. We propose the AF and DF based optimal relay selection (i.e., AFbORS and DFbORS) schemes to improve the wireless security against eavesdropping attack. For the purpose of comparison, we examine the traditional AFbORS and DFbORS schemes, denoted by T-AFbORS and TDFbORS, respectively. We also investigate a so-called multiple relay combining (MRC) framework and present the traditional AF and DF based MRC schemes, called T-AFbMRC and TDFbMRC, where multiple relays participate in forwarding the source signal to destination which then combines its received signals from the multiple relays. We derive closed-form intercept probability expressions of the proposed AFbORS and DFbORS (i.e., P-AFbORS and P-DFbORS) as well as the T-AFbORS, TDFbORS, T-AFbMRC and T-DFbMRC schemes in the presence of eavesdropping attack. We further conduct an asymptotic intercept probability analysis to evaluate the diversity order performance of relay selection schemes and show that no matter which relaying protocol is considered (i.e., AF and DF), the traditional and proposed optimal relay selection approaches both achieve the diversity order M where M represents the number of relays. In addition, numerical results show that for both AF and DF protocols, the intercept probability performance of proposed optimal relay selection is strictly better than that of the traditional relay selection and multiple relay combining methods.Comment: 13 page

    On-Demand Cooperation MAC Protocols with Optimal Diversity-Multiplexing Tradeoff

    Get PDF
    This paper presents access protocols with optimal Diversity-Multiplexing Tradeoff (DMT) performance in the context of IEEE 802.11-based mesh networks. The protocols are characterized by two main features: on-demand cooperation and selection of the best relay terminal. The on-demand characteristic refers to the ability of a destination terminal to ask for cooperation when it fails in decoding the message transmitted by a source terminal. This approach allows maximization of the spatial multiplexing gain. The selection of the best relay terminal allows maximization of the diversity order. Hence, the optimal DMT curve is achieved with these protocols
    • 

    corecore